Skip to main content
Log in

Computer-aided design of microfluidic resistive network using circuit partition and CFD-based optimization and application in microalgae assessment for marine ecological toxicity

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

We present an automatic design process for microfluidic dilution network towards marine ecological toxicity assessment on microalgae. Based on the hydraulic–electric circuit analogy, we defined an abstract specification using computer-aided designing system. Several approaches, especially circuit partition, were applied to minimize design effort. Computational fluid dynamics (CFD) simulation was exploited to convert the electrics specification to fabrication model. We automatically designed the combinational-mixing-serial dilution microfluidics to generate parallel stepwise gradients for mixing chemicals (binary/ternary/quaternary mixture) using the present algorithm. We critically discussed design rules and evaluated the microfluidic performance by colorimetric analysis. To examine whether these microfluidic chips can be used for toxicity test on microalgae, single and joint toxic effects of heavy metals (copper, mercury, zinc, and cadmium) were examined on line. In all cases, dose-related toxic responses were successfully detected. These results provided a solution for designing resistive network using circuit partition and CFD-based optimization and a route to develop a promising user-friendly alternative for microalgae bioassays as well as cell-based screening experiments in risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. MacDonald MP, Spalding GC, Dholakia K (2003) Microfluidic sorting in an optical lattice. Nature 426:421–424

    Article  CAS  Google Scholar 

  2. Ye N, Qin J, Shi W, Liu X, Lin B (2007) Cell-based high content screening using an integrated microfluidic device. Lab Chip 7:1696–1704

    Article  CAS  Google Scholar 

  3. Garcia-Alonso J, Greenway GM, Hardege JD, Haswell SJ (2009) A prototype microfluidic chip using fluorescent yeast for detection of toxic compounds. Biosens Bioelectron 24:1508–1511

    Article  CAS  Google Scholar 

  4. Zheng G, Wang Y, Wang Z, Zhong W, Wang H, Li Y (2013) An integrated microfluidic device in marine microalgae screening application. Mar Pollut Bull 72:231–243

    Article  CAS  Google Scholar 

  5. Lu L, Zheng GX, Yang YS, Feng CY, Liu FF, Wang YH (2017) Measurement of Giardia lamblia adhesion force using an integrated microfluidic assay. Anal Bioanal Chem 409:1451–1459

    Article  CAS  Google Scholar 

  6. Kim C, Lee K, Kim JH, Shin KS, Lee K-J, Kim TS, Kang JY (2008) A serial dilution microfluidic device using a ladder network generating logarithmic or linear concentrations. Lab Chip 8:473–479

    Article  CAS  Google Scholar 

  7. Walker GM, Monteiro-Riviere N, Rouse J, O’Neill AT (2007) A linear dilution microfluidic device for cytotoxicity assays. Lab Chip 7:226–232

    Article  CAS  Google Scholar 

  8. Campbell K, Groisman A (2007) Generation of complex concentration profiles in microchannels in a logarithmically small number of steps. Lab Chip 7:264–272

    Article  CAS  Google Scholar 

  9. Liu MC, Ho D, Tai YC (2008) Monolithic fabrication of three-dimensional microfluidic networks for constructing cell culture array with an integrated combinatorial mixer. Sens Actuators B Chem 129:826–833

    Article  CAS  Google Scholar 

  10. Cooksey GA, Sip CG, Folch A (2009) A multi-purpose microfluidic perfusion system with combinatorial choice of inputs, mixtures, gradient patterns, and flow rates. Lab Chip 9:417–426

    Article  CAS  Google Scholar 

  11. Irimia D, Geba DA, Toner M (2006) Universal microfluidic gradient generator. Anal Chem 78:3472–3477

    Article  CAS  Google Scholar 

  12. Woerner M (2012) Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid Nanofluid 12:841–886

    Article  CAS  Google Scholar 

  13. Lee K, Kim C, Jung G, Kim TS, Kang JY, Oh KW (2010) Microfluidic network-based combinatorial dilution device for high throughput screening and optimization. Microfluid Nanofluid 8:677–685

    Article  CAS  Google Scholar 

  14. Oh KW, Lee K, Ahn B, Furlani EP (2012) Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12:515–545

    Article  CAS  Google Scholar 

  15. Narayan KL, Rao KM, Sarcar MMM (2008) Computer aided design and manufacturing. Prentice-Hall, New Delhi

    Google Scholar 

  16. Shi CJR, Tian MW, Shi G (2006) Efficient DC fault simulation of nonlinear analog circuits: one-step relaxation and adaptive simulation continuation. IEEE Trans Comput Aided Des Integr Circuits Syst 25:1392–1400

    Article  Google Scholar 

  17. Ma Y, Yeh LH, Qian S, Hsu JP, Tseng S (2014) Analytical model for surface charge property of pH-regulated nanorods. Electrochem Commun 45:75–78

    Article  CAS  Google Scholar 

  18. Xuan X, Li D (2008) Joule heating in electrokinetic flow: theoretical models. In: Li D (ed) Encyclopedia of microfluidics and nanofluidics. Springer, Boston, pp 896–905

    Chapter  Google Scholar 

  19. Zhou T, Liu T, Deng Y, Chen L, Qian S, Liu Z (2017) Design of microfluidic channel networks with specified output flow rates using the CFD-based optimization method. Microfluid Nanofluid 21(1):11

    Article  Google Scholar 

  20. Williams TD, Hutchinson TH, Roberts GC, Coleman CA (1993) The assessment of industrial effluent toxicity using aquatic microorganisms, invertebrates and fish. Sci Total Environ 134:1129–1141

    Article  Google Scholar 

  21. Klaine SJ, Lewis MA (1995) Algal and plant toxicity testing. Handbook of Ecotoxicology. Lewis Publishers, Boca Raton

    Google Scholar 

  22. Wah Chu K, Chow KL (2002) Synergistic toxicity of multiple heavy metals is revealed by a biological assay using a nematode and its transgenic derivative. Aquat Toxicol (Amsterdam, The Netherlands) 61:53–64

    Article  CAS  Google Scholar 

  23. Ragusa MA, Costa S, Cuttitta A, Gianguzza F, Nicosia A (2017) Coexposure to sulfamethoxazole and cadmium impairs development and attenuates transcriptional response in sea urchin embryo. Chemosphere 180:275–284

    Article  CAS  Google Scholar 

  24. Mccormick PV, Cairns J (1994) Algae as indicators of environmental change. J Appl Phycol 6:509–526

    Article  Google Scholar 

  25. Delorenzo ME, Taylor LA, Lund SA, Pennington PL, Strozier ED, Fulton MH (2002) Toxicity and bioconcentration potential of the agricultural pesticide endosulfan in phytoplankton and zooplankton. Arch Environ Contam Toxicol 42:173–181

    Article  CAS  Google Scholar 

  26. Persoone G, Janssen C, Coen WD (2000) New microbiotests for routine toxicity screening and biomonitoring. Springer, New York

    Book  Google Scholar 

  27. Haskins CC (2008) Electricity made simple and treated non-technically. C Macdonald Press, London

    Google Scholar 

  28. Esposito A (1969) A simplified method for analyzing hydraulic circuits by analogy. Mach Des 41(24):173–177

    Google Scholar 

  29. Cimbala J, Cnegel Y (2006) Fluid mechanics: fundamentals and applications. McGraw-HillHigher Education, New York

    Google Scholar 

  30. Zheng G, Wang Y, Qin J (2012) Microalgal motility measurement microfluidic chip for toxicity assessment of heavy metals. Anal Bioanal Chem 404:3061–3069

    Article  CAS  Google Scholar 

  31. Feng C, Wei J, Li Y, Yang Y, Wang Y, Lu L, Zheng G (2016) An on-chip pollutant toxicity determination based on marine microalgal swimming inhibition. Analyst 141:1761–1771

    Article  CAS  Google Scholar 

  32. Marking LL, Dawson VK (1975) Method of assessment of toxicity or efficacy of mixtures of chemicals. Center Integr Data Anal Wis Sci Center 67:1–8

    Google Scholar 

  33. Marking LL (1977) Aquatic toxicology and hazard evaluation. ASTM, Philadelphia, pp 99–108

    Book  Google Scholar 

  34. Kirby B (2010) Micro and nanoscale fluid mechanics, transport in microfluidic devices. Cambridge University Press, Cambridge

    Book  Google Scholar 

  35. Mohamed Gad-el-Hak (2002) The MEMS handbook. CRC Press, London

    Google Scholar 

  36. Berthier J, Silberzan P (2009) Microfluidics for biotechnology. Artech House, London

    Google Scholar 

  37. Associazione C, Delle I (2006) Microfluidics: history, theory and applications, vol 2. Springer, New York, pp 67–69

    Google Scholar 

  38. Elcherif Y, Lin PM (1991) Transient analysis and sensitivity computation in piecewise-linear circuits. IEEE Trans Circuits Syst 38:1525–1533

    Article  Google Scholar 

  39. Goncalves JM (2005) Regions of stability for limit cycle oscillations in piecewise linear systems. IEEE Trans Autom Control 50:1877–1882

    Article  Google Scholar 

  40. Dorf RC (1997) The electrical engineering handbook. CRC Press, New York

    Google Scholar 

  41. Gray PR (2001) Analysis and design of analog integrated circuits, vol 24(7). Wiley, New York, p 533

    Google Scholar 

  42. Liu J, Chen S, Nie X, Robbins MO (2007) A continuum-atomistic simulation of heat transfer in micro- and nano-flows. J Comput Phys 227:279–291

    Article  Google Scholar 

  43. Tabeling P, Cheng S (2006) Introduction to microfluidics. Oxford University Press, Oxford

    Google Scholar 

  44. Cid A, Herrero C, Torres E, Abalde J (1995) Copper toxicity on the marine microalga Phaeodactylum tricornutum: effects on photosynthesis and related parameters. Aquat Toxicol 31:165–174

    Article  CAS  Google Scholar 

  45. Trevors JT, Stratton GW, Gadd GM (1986) Cadmium transport, resistance, and toxicity in bacteria, algae, and fungi. Can J Microbiol 32(6):447–464

    Article  CAS  Google Scholar 

  46. Franklin NM, Stauber JL, Lim RP, Petocz P (2002) Toxicity of metal mixtures to a tropical freshwater alga (Chlorella sp): the effect of interactions between copper, cadmium, and zinc on metal cell binding and uptake. Environ Toxicol Chem 21:2412–2422

    Article  CAS  Google Scholar 

  47. Duan J, Zhang Y, Zhao N, Yin G, Xiao X, Fang L, Liu W (2015) Joint toxicity of multi-heavy-metal to Chlorella pyrenoidosa based on 2 ~ 4 factorial design. J Atmos Environ Opt 10:376–385

    Google Scholar 

  48. Tian C (2010) Study on the discipline of algal fluorescence response to heavy metal toxicity. Dissertation for the master degree, Hebei University of Seience and Technology

  49. Visviki I, Rachlin JW (1994) Acute and chronic exposure of Dunaliella salina and Chlamydomonas bullosa to copper and cadmium: effects on growth. Arch Environ Contam Toxicol 26:149–153

    CAS  PubMed  Google Scholar 

  50. Nugroho AP, Handayani NSN, Pramudita IGA (2017) Combined effects of copper and cadmium on Chlorella pyrenoidosa H.Chick: subcellular accumulation, distribution, and growth inhibition. Toxicol Environ Chem 99:1368–1377

    Article  CAS  Google Scholar 

  51. Maksimov VN, Gupta A (1992) The combined action of some heavy metals on marine phytoplankton. Vestn MGU (Biol) 2:51–57

    Google Scholar 

  52. Stauber JL, Florence TM (1987) Mechanism of toxicity of ionic copper and copper complexes to algae. Mar Biol 94:511–519

    Article  CAS  Google Scholar 

  53. Luekim H, Wozniak PC, Fletcher RA (1980) Cadmium toxicity on synchronous populations of Chlorella ellipsoidea. Can J Bot 58:1780–1788

    Article  CAS  Google Scholar 

  54. Xue HB, Stumm W, Sigg L (1988) The binding of heavy metals to algal surfaces. Water Res 22:917–926

    Article  CAS  Google Scholar 

  55. Gonzalez-Davila M, Santana-Casiano JM, Perez-Pena J, Millero FJ (1995) Binding of Cu(II) to the surface and exudates of the alga Dunaliella tertiolecta in seawater. Environ Sci Technol 29:289–301

    Article  CAS  Google Scholar 

  56. Sunda WG, Huntsman SA (1998) Processes regulating cellular metal accumulation and physiological effects: phytoplankton as model systems. Sci Total Environ 219:165–181

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 41476085, 81471807), Scientific Research Project of Liaoning Education Department (LJQ2015005) and Dalian Innovation Project for Talents (2015R087).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoxia Zheng or Yunhua Wang.

Ethics declarations

Conflict of interest

There is no conflict to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 11816 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, B., Zheng, G., Wei, J. et al. Computer-aided design of microfluidic resistive network using circuit partition and CFD-based optimization and application in microalgae assessment for marine ecological toxicity. Bioprocess Biosyst Eng 42, 785–797 (2019). https://doi.org/10.1007/s00449-019-02082-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02082-0

Keywords

Navigation