Bioprocess and Biosystems Engineering

, Volume 42, Issue 5, pp 727–739 | Cite as

Scenedesmus obliquus metabolomics: effect of photoperiods and cell growth phases

  • Raquel Guidetti Vendruscolo
  • Mariane Bittencourt Fagundes
  • Mariana Manzoni Maroneze
  • Tatiele Casagrande do Nascimento
  • Cristiano Ragagnin de Menezes
  • Juliano Smanioto Barin
  • Leila Queiroz Zepka
  • Eduardo Jacob-Lopes
  • Roger WagnerEmail author
Research Paper


Environmental factors directly affect the growth and composition of microalgal biomass. Therefore, the present work analyzed the metabolomics (amino acids, organic acids, and fatty acids) of the microalga Scenedesmus obliquus cultivated in 24:0 and 12:12 (light:dark) photoperiods and different phases of cell growth. Furthermore, the metabolites were related to protein, lipid, and chlorophyll contents at the end of cultivation. The highest biomass concentration (4020 mg L− 1) and protein (47.3%) were obtained in culture under constant illumination. The cultivation 12:12 (light:dark) photoperiod triggered higher production of lipids (23.0%) and chlorophylls (26.4 mg g− 1) by S. obliquus. Microalgal metabolites were greatly affected by photoperiod and by phase of cell growth. Thus, metabolite production could be related to both the environmental conditions under which cultivation occurred and to the different concentrations of products (proteins, lipids, and chlorophylls) present in the S. obliquus biomass.


Microalgae Metabolites Protein Lipids Chlorophyll 



To the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests.


  1. 1.
    Gavrisheva AI, Belokopytov BF, Semina VI, Shastik ES, Laurinavichene TV, Tsygankov AA (2015) Mass–energy balance analysis for estimation of light energy conversion in an integrated system of biological H2 production. Biofuel Res J 6:324–330CrossRefGoogle Scholar
  2. 2.
    Yu X, Chen L, Zhang W (2015) Chemicals to enhance microalgal growth and accumulation of high-value bioproducts. Front Microbiol 6:56–65Google Scholar
  3. 3.
    Begum H, Yusoff FM, Banerjee S, Khatoon H, Shariff M (2016) Availability and utilization of pigments from microalgae. Crit Rev Food Sci Nutr 56(13):2209–2222CrossRefGoogle Scholar
  4. 4.
    Skjånes K, Rebours C, Lindblad P (2013) Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit Rev Biotechnol 33:172–215CrossRefGoogle Scholar
  5. 5.
    Draaisma RB, Wijffels RH, Slegers PM, Brentner LB, Roy A, Barbosa MJ (2013) Food commodities from microalgae. Curr Opin Biotechnol 24:169–177CrossRefGoogle Scholar
  6. 6.
    Mubarak M, Shaija A, Suchithra TV (2015) A review on the extraction of lipid from microalgae for biodiesel production. Algal Res 7:117–123CrossRefGoogle Scholar
  7. 7.
    Wahidin S, Idris A, Shaleh SR (2013) The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresour Technol 129:7–11CrossRefGoogle Scholar
  8. 8.
    Yan C, Zheng Z (2013) Performance of photoperiod and light intensity on biogas upgrade and biogas effluent nutrient reduction by the microalgae Chlorella sp. Bioresour Technol 139:292–299CrossRefGoogle Scholar
  9. 9.
    Mohsenpour SF, Richards B, Willoughby N (2012) Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production. Bioresour Technol 125:75–81CrossRefGoogle Scholar
  10. 10.
    Markou G, Nerantzis E (2013) Microalgae for high value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv 31:1532–1542CrossRefGoogle Scholar
  11. 11.
    Chen G, Zhao L, Qi Y (2015) Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: a critical review. Appl Energy 137:282–291CrossRefGoogle Scholar
  12. 12.
    Gimpel JA, Henríquez V, Mayfield SP (2015) In metabolic engineering of eukaryotic microalgae: potential and challenges come with great diversity. Front Microbiol 6:1376–1389CrossRefGoogle Scholar
  13. 13.
    Rippka R, Deruelles J, Waterbury JB, Herdman M, Stainer RY (1979) Generic assignments strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111(1):1–61Google Scholar
  14. 14.
    APHA (1998) Standard methods for the examination of water and wastewater. American Public Health Association (APHA), Washington, DCGoogle Scholar
  15. 15.
    Horowitz W (2000) AOAC official methods of analysis. Association of Official Analytical Chemists International, GaithersburgGoogle Scholar
  16. 16.
    Rodrigues DB, Menezes CR, Mercadante AZ, Jacob-Lopes E, Zepka LQ (2015) Bioactive pigments from microalgae Phormidium autumnale. Food Res Int 77(2):273–279CrossRefGoogle Scholar
  17. 17.
    Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate coefficients and simultaneous equations for assay chlorophyll a and b extracted with four different solvents: varification of the concentration of chlorophyll standards by atomic absorption spectrometry. Biochim Biophys Acta 975:384–394CrossRefGoogle Scholar
  18. 18.
    Vendruscolo RG, Facchi MMX, Maroneze MM, Fagundes MB, Cichoski AJ, Zepka LQ, Barin JS, Jacob-Lopes E, Wagner R (2018) Polar and non-polar intracellular compounds from microalgae: Methods of simultaneous extraction, gas chromatography determination and comparative analysis. Food Res Int 109:204–212CrossRefGoogle Scholar
  19. 19.
    Hartman L, Lago RCA (1973) Rapid preparation of fatty acids methyl esters. Lab Pract 22(6):475–476Google Scholar
  20. 20.
    Jacob-opes E, Scoparo CHG, Lacerda LMCF, Franco TT (2009) Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors. Chem Eng Process 48(1):306–310CrossRefGoogle Scholar
  21. 21.
    Krzemińska I, Pawlik-Skowrońska B, Trzcińska M, Tys J (2014) Influence of photoperiods on the growth rate and biomass productivity of green microalgae. Bioprocess Biosyst Eng 37:735–741CrossRefGoogle Scholar
  22. 22.
    Ho SH, Chena CY, Yeha KL, Chenc WM, Lind CY, Chang JS (2010) Characterization of photosynthetic carbon dioxide fixation ability of indigenous Scenedesmus obliquus isolates. Biochem Eng J 53:57–62CrossRefGoogle Scholar
  23. 23.
    Ma C, Zhang Y, Ho S, Xing D, Ren N, Liu B (2017) Cell growth and lipid accumulation of a microalgal mutant Scenedesmus sp. Z-4 by combining light/dark cycle with temperature variation. Biotechnol Biofuels 10:260–272CrossRefGoogle Scholar
  24. 24.
    Hexin LV, Qu G, Qi X, Lu L, Tian C, Ma Y (2013) Transcriptome analysis of Chlamydomonas reinhardtii during the process of lipid accumulation. Genomics 101(4):229–237CrossRefGoogle Scholar
  25. 25.
    George B, Pancha I, Desai C, Chokshi K, Paliwal C, Ghosh T, Mishra S (2014) Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus—a potential strain for bio-fuel production. Bioresour Technol 171:367–374CrossRefGoogle Scholar
  26. 26.
    Seyfabadi J, Ramezanpour Z, Khoeyi ZA (2011) Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. J Appl Phycol 23:721–726CrossRefGoogle Scholar
  27. 27.
    Chandra TS, Aditi S, Kumar MM, Mukherji S (2017) Growth and biochemical characteristics of an indigenous freshwater microalga, Scenedesmus obtusus, cultivated in an airlift photobioreactor: effect of reactor hydrodynamics, light intensity, and photoperiod. Bioprocess Biosyst Eng 40:1057–1068CrossRefGoogle Scholar
  28. 28.
    Sharma R, Singh GP, Sharma VK (2012) Effects of culture conditions on growth and biochemical profile of Chlorella vulgaris. J Plant Pathol Microbiol 3:1–6CrossRefGoogle Scholar
  29. 29.
    Oikawa A, Matsuda F, Kikuyama M, Mimura T, Saito K (2011) Metabolomics of a single vacuole reveals metabolic dynamism in an alga Chara australis. Plant Physiol 157:544–555CrossRefGoogle Scholar
  30. 30.
    Gravot A, Dittami SM, Rousvoal S, Lugan R, Eggert A, Collén J, Boyen C, Bouchereau A, Tonon T (2010) Diurnal oscillations of metabolite abundances and gene analysis provide new insights into central metabolic processes of the brown alga Ectocarpus siliculosus. New Phytol 188:98–110CrossRefGoogle Scholar
  31. 31.
    El-Sheekh MM, Fathy AA (2009) Variation of some nutritional constituents and fatty acid profiles of Chlorella vulgaris Beijerinck grown under auto and heterotrophic conditions. Inter J Botany 5:153–159CrossRefGoogle Scholar
  32. 32.
    Khairy HM, Ali EM, Dowidar SM (2011) Comparative effects of autotrophic and heterotrophic growth on some vitamins, 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity, amino acids and protein profile of Chlorella vulgaris Beijerinck. Afr J Biotechnol 10:13514–13519Google Scholar
  33. 33.
    Ben-Izhak ME, Parola AH, Kost D (2003) Low-frequency electromagnetic fields induce a stress effect upon higher plants, as evident by the universal stress signal, alanine. Biochem Biophys Res Commun 302:427–434CrossRefGoogle Scholar
  34. 34.
    Ben-Izhak ME, Levkovitz A, Kost D (2015) Ultraviolet radiation induces stress in etiolated Landoltia punctata, as evidenced by the presence of alanine, a universal stress signal: a 15N NMR study. Plant Biol 17:101–107CrossRefGoogle Scholar
  35. 35.
    Nehmé R, Atieh C, Fayad S, Claude B, Chartier MT, Elleuch F, Abdelkafi S, Pichon C, Morin P (2017) Microalgae amino acid extraction and analysis at nanomolar level using electroporation and capillary electrophoresis with laser-induced fluorescence detection. J Sep Sci 40(2):558–566CrossRefGoogle Scholar
  36. 36.
    Kang Z, Wang Y, Wang Q, Qi Q (2011) Metabolic engineering to improve 5-aminolevulinic acid production. Bioeng Bugs 2(6):342–345CrossRefGoogle Scholar
  37. 37.
    Pereira DM, Valentão P, Andrade PB (2014) Marine natural pigments: chemistry, distribution and analysis. Dyes Pigm 111:124–134CrossRefGoogle Scholar
  38. 38.
    Arnold AA, Genard B, Zito F, Tremblay R, Warschawski DE, Marcotte I (2015) Identification of lipid and saccharide constituents of whole microalgal cells by 13C solid-state NMR. Biochim Biophys Acta 1848:369–377CrossRefGoogle Scholar
  39. 39.
    Demuez M, Mahdy A, Tomás-Pejó E, González-Fernández C, Ballesteros M (2015) Enzymatic cell disruption of microalgae biomass in biorefinery processes. Biotechnol Bioeng 112:1955–1966CrossRefGoogle Scholar
  40. 40.
    Duan Z, Tan X, Guo J, Kahehu CW, Yang H, Zheng X, Zhu F (2017) Effects of biological and physical properties of microalgae on disruption induced by a low-frequency ultrasound. J Appl Phycol 29(6):2937–2946CrossRefGoogle Scholar
  41. 41.
    Voigt J, Stolarczyk A, Zych M, Malec P, Burczyk J (2014) The predominant cell-wall polypeptide of Scenedesmus obliquus is related to the cell-wall glycoprotein gp3 of Chlamydomonas reinhardtii. Plant Sci 215–216:39–47CrossRefGoogle Scholar
  42. 42.
    Hildebrand D (2010) Plant Biochemistry BCH/PPA/PLS 609. Accessed 20 Mar 2018
  43. 43.
    Abomohra A, Wagner M, El-Sheekh M, Hanelt D (2013) Lipid and total fatty acid productivity in photoautotrophic fresh water microalgae: screening studies towards biodiesel production. J Appl Phycol 25(4):931–936CrossRefGoogle Scholar
  44. 44.
    Tang H, Chen M, Garcia MED, Abunasser N, Simon Ng KY, Salley SO (2011) Culture of microalgae Chlorella minutissima for biodiesel feedstock production. Biotechnol Bioeng 108(10):2280–2287CrossRefGoogle Scholar
  45. 45.
    Rismani-Yazdi H, Haznedaroglu BZ, Bibby K, Peccia J (2011) Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genom 12:148–164CrossRefGoogle Scholar
  46. 46.
    Talebi AF, Mohtashami SK, Tabatabaei M, Tohidfar M, Bagheri A, Zeinalabedini M, Mirzaei HH, Mirzajanzadeh M, Shafaroudi SM, Bakhtiari (2013) Fatty acids profiling: a selective criterion for screening microalgae strains for biodiesel production. Algal Res 2(3):258–267CrossRefGoogle Scholar
  47. 47.
    Schmid M, Kraft LGK, van der Loos LM, Kraft GT, Virtue P, Nichols PD, Hurd CL (2018) Southern Australian seaweeds: a promising resource for omega-3 fatty acids. Food Chem 265:70–77CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Raquel Guidetti Vendruscolo
    • 1
  • Mariane Bittencourt Fagundes
    • 1
  • Mariana Manzoni Maroneze
    • 1
  • Tatiele Casagrande do Nascimento
    • 1
  • Cristiano Ragagnin de Menezes
    • 1
  • Juliano Smanioto Barin
    • 1
  • Leila Queiroz Zepka
    • 1
  • Eduardo Jacob-Lopes
    • 1
  • Roger Wagner
    • 1
    Email author
  1. 1.Department of Food Technology and ScienceFederal University of Santa Maria (UFSM)Santa MariaBrazil

Personalised recommendations