Skip to main content
Log in

Lipid production by Cryptococcus albidus using biowastes hydrolysed by indigenous microbes

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The efficiency of Cryptococcusalbidus was evaluated for its abilities to assimilate onion and apple hydrolysates as a medium for lipid production. Onion waste (OW) and apple waste (AW) were hydrolysed at an organic load of 2% total solids by indigenous microbes under mesophilic conditions. The indigenous microbes effectively hydrolysed both wastes giving the highest reducing sugar content of 4.8 g/L and 10.8 g/L with OW and AW hydrolysates, respectively. The microbiome analysis revealed that most of the indigenous microbes belonged to genus Bacillus and a significant population of α-proteobacteria and γ-proteobacteria were also present. Cell retention culture of C. albidus at a dilution rate of 0.01 h−1 resulted in a total dry cell weight (DCW) of 13.5 g/L with an intracellular lipid content of 20.0% at 168 h, corresponding to an enhancement of 3.48-folds and 2.37-folds in DCW and lipid concentration, respectively, as compared to batch fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kumar P, Pant DC, Mehariya S, Sharma R, Kansal A, Kalia VC (2014) Ecobiotechnological strategy to enhance efficiency of bioconversion of wastes into hydrogen and methane. Indian J Microbiol 54:262–267

    Article  PubMed  PubMed Central  Google Scholar 

  2. Leiva-Candia DE, Pinzi S, Redel-Macias MD, Koutinas A, Webb C, Dorado MP (2014) The potential for agro-industrial waste utilization using oleaginous yeast for the production of biodiesel. Fuel 123:33–42

    Article  CAS  Google Scholar 

  3. Kumar P, Ray S, Kalia VC (2016) Production of co-polymers of polyhydroxyalkanoates by regulating the hydrolysis of biowastes. Bioresour Technol 200:413–419

    Article  CAS  PubMed  Google Scholar 

  4. Park GW, Fei Q, Jung K, Chang HN, Kim YC, Kim N-J, Kim S, Cho J (2014) Volatile fatty acids derived from waste organics provide an economical carbon source for microbial lipids/biodiesel production. Biotechnol J 9:1536–1546

    Article  CAS  PubMed  Google Scholar 

  5. Zhou YJ, Buijs NA, Zhu Z, Qin J, Siewers V, Nielsen J (2016) Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat Commun 7:11709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Middelhoven WJ (1997) Identity and biodegradative abilities of yeasts isolated from plants growing in an arid climate. Antonie Van Leeuwenhoek 72:81–89

    Article  CAS  PubMed  Google Scholar 

  7. Tanimura A, Takashima M, Sugita T, Endoh R, Kikukawa M, Yamaguchi S, Sakuradani E, Ogawa J, Ohkuma M, Shima J (2014) Cryptococcus terricola is a promising oleaginous yeast for biodiesel production from starch through consolidated bioprocessing. Sci Rep 4:4776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu X, Zeng J, Zheng Y, Chen S (2014) Effect of lignocellulose degradation products on microbial biomass and lipid production by the oleaginous yeast Cryptococcus curvatus. Process Biochem 49:457–465

    Article  CAS  Google Scholar 

  9. Deeba F, Pruthi V, Negi YS (2016) Converting paper mill sludge into neutral lipids by oleaginous yeast Cryptococcus vishniaccii for biodiesel production. Bioresour Technol 213:96–102

    Article  CAS  PubMed  Google Scholar 

  10. Fei Q, Chang HN, Shang L (2011) Exploring low-cost carbon sources for microbial lipids production by fed-batch cultivation of Cryptococcus albidus. Biotechnol Bioprocess Eng 16:482–487

    Article  CAS  Google Scholar 

  11. Fei Q, Chang HN, Shang L, Kim N, Kang J (2011) The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production. Bioresour Technol 102:2695–2701

    Article  CAS  PubMed  Google Scholar 

  12. Gong Z, Shen H, Zhou W, Wang Y, Yang X, Zhao ZK (2015) Efficient conversion of acetate into lipids by the oleaginous yeast Cryptococcus curvatus. Biotechnol Biofuels 8:189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vincke D, Baeten V, Sinnaeve G, Dardenne P, Pierna JAF (2014) Determination of outer skin in dry onions by hyperspectral imaging spectroscopy and chemometrics. NIR news 25:9–12

    Article  Google Scholar 

  14. Yates M, Gomez MR, Martin-Luengo MA, Ibañez VZ, Serrano AMM (2017) Multivalorization of apple pomace towards materials and chemicals. J Clean Prod 143:847–853

    Article  CAS  Google Scholar 

  15. Magyar M, da Costa Sousa L, Jin M, Sarks C, Balan V (2016) Conversion of apple pomace waste to ethanol at industrial relevant conditions. Appl Microbiol Biotechnol 100:7349–7358

    Article  CAS  PubMed  Google Scholar 

  16. Chandrasekhar K, Amulya K, Mohan SV (2015) Solid phase bio-electrofermentation of food waste to harvest value-added products associated with waste remediation. Waste Manag 45:57–65

    Article  CAS  PubMed  Google Scholar 

  17. Kumar P, Chandrasekhar K, Kumari A, Sathiyamoorthi E, Kim BS (2018) Electro-fermentation in aid of bioenergy and biopolymers. Energies 11:343

    Article  CAS  Google Scholar 

  18. Kumar P, Jun HB, Kim BS (2018) Co-production of polyhydroxyalkanoates and carotenoids through bioconversion of glycerol by Paracoccus sp. strain LL1. Int J Biol Macromol 107:2552–2558

    Article  CAS  PubMed  Google Scholar 

  19. Bhatia SK, Kim J, Song HS, Kim HJ, Jeon JM, Sathiyanarayanan G, Yoon JJ, Park K, Kim Y-G, Yang YH (2017) Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01. Bioresour Technol 233:99–109

    Article  CAS  PubMed  Google Scholar 

  20. Dini I, Tenore GC, Dini A (2008) Chemical composition, nutritional value and antioxidant properties of Allium caepa L. Var. tropeana (red onion) seeds. Food Chem 107:613–621

    Article  CAS  Google Scholar 

  21. Vendruscolo F, Albuquerque PM, Streit F, Esposito E, Ninow JL (2008) Apple pomace: a versatile substrate for biotechnological applications. Crit Rev Biotechnol 28:1–12

    Article  CAS  PubMed  Google Scholar 

  22. Favaro L, Alibardi L, Lavagnolo MC, Casella S, Basaglia M (2013) Effects of inoculum and indigenous microflora on hydrogen production from the organic fraction of municipal solid waste. Int J Hydrogen Energy 38:11774–11779

    Article  CAS  Google Scholar 

  23. Kumar P, Patel SKS, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561

    Article  CAS  PubMed  Google Scholar 

  24. Lee B, Park JG, Shin WB, Tian DJ, Jun HB (2017) Microbial communities change in an anaerobic digestion after application of microbial electrolysis cells. Bioresour Technol 234:273–280

    Article  CAS  PubMed  Google Scholar 

  25. Lata K, Rajeshwari KV, Pant DC, Kishore VVN (2002) Volatile fatty acid production during anaerobic mesophilic digestion of tea and vegetable market wastes. World J Microbiol Biotechnol 18:589–592

    Article  CAS  Google Scholar 

  26. Johnravindar D, Karthikeyan OP, Selvam A, Murugesan K, Wong JCW (2018) Lipid accumulation potential of oleaginous yeasts: a comparative evaluation using food waste leachate as a substrate. Bioresour Technol 248:221–228

    Article  CAS  PubMed  Google Scholar 

  27. Sung IK, Han NS, Kim BS (2012) Co-production of biomass and metabolites by cell retention culture of Leuconostoc citreum. Bioprocess Biosyst Eng 35:715–720

    Article  CAS  PubMed  Google Scholar 

  28. Vajpeyi S, Chandran K (2015) Microbial conversion of synthetic and food waste-derived volatile fatty acids to lipids. Bioresour Technol 188:49–55

    Article  CAS  PubMed  Google Scholar 

  29. Chi ZY, Zheng YB, Jiang AP, Chen SL (2011) Lipid production by culturing oleaginous yeast and algae with food waste and municipal wastewater in an integrated process. Appl Biochem Biotechnol 165:442–453

    Article  CAS  PubMed  Google Scholar 

  30. Lee JE, Vadlani PV, Min D (2017) Sustainable production of microbial lipids from lignocellulosic biomass using oleaginous yeast cultures. J Sustain Bioenergy Syst 7:36–50

    Article  CAS  Google Scholar 

  31. Yu X, Zheng Y, Dorgan KM, Chen S (2011) Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour Technol 102:6134–6140

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF-2017R1A2B4002371). ES and PK are thankful for the financial support provided by a Brain Korea 21 plus project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beom Soo Kim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 912 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathiyamoorthi, E., Kumar, P. & Kim, B.S. Lipid production by Cryptococcus albidus using biowastes hydrolysed by indigenous microbes. Bioprocess Biosyst Eng 42, 687–696 (2019). https://doi.org/10.1007/s00449-019-02073-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02073-1

Keywords

Navigation