Skip to main content

Advertisement

Log in

Removal of aluminium from aqueous solution by four wild-type strains of Aspergillus niger

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This paper provides a unique comparison of the performance of four wild-type Aspergillus niger strains in remediation of aluminium(III)-contaminated aqueous solutions. The direct fungal aluminium removal via biosorption and bioaccumulation was compared among all fungal strains, including bioaccumulation efficiency during dynamic and static cultivation. Our results indicate that aluminium bioaccumulation by living biomass outperformed biosorption, although biosorption by non-living biomass is a less time-demanding process. Among others, only one strain significantly differed regarding comparison of dynamic and static bioaccumulation. In this case, a significantly higher removal performance was achieved under dynamic cultivation conditions at initial aluminium(III) concentrations over 2.5 mg L−1. Although the fungal sensitivity towards aluminium(III) differed among selected fungal strains, there was no apparent correlation between the strains’ removal performance and their adaptive mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dhankhar R, Hooda A (2011) Fungal biosorption—an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ Technol 32(5):467–491. https://doi.org/10.1080/09593330.2011.572922

    Article  CAS  PubMed  Google Scholar 

  2. Verma T, Maurya A, Tripathi M, Garg SK (2017) Mycoremediation: an alternative treatment strategy for heavy metal-laden wastewater. In: Satyanarayana T, Deshmukh SK, Johri BN (eds) Developments in fungal biology and applied mycology. Springer, Singapore, pp 315–340. https://doi.org/10.1007/978-981-10-4768-8_17

    Chapter  Google Scholar 

  3. Mishra V (2014) Biosorption of zinc ion: a deep comprehension. Appl Water Sci 4(4):311–332. https://doi.org/10.1007/s13201-013-0150-x

    Article  CAS  Google Scholar 

  4. Oladipo OG, Awotoye OO, Olayinka A, Bezuidenhout CC, Maboeta MS (2018) Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites. Braz J Microbiol 49(1):29–37. https://doi.org/10.1016/j.bjm.2017.06.003

    Article  CAS  PubMed  Google Scholar 

  5. Gadd GM (1994) Interactions of fungi with toxic metals. In: Powell KA, Renwick A, Peberdy JF (eds) The genus Aspergillus: from taxonomy and genetics to industrial application. Springer, Boston, pp 361–374. https://doi.org/10.1007/978-1-4899-0981-7_28

    Chapter  Google Scholar 

  6. Gadd GM (1993) Interactions of fungi with toxic metals. New Phytol 124(1):25–60. https://doi.org/10.1111/j.1469-8137.1993.tb03796.x

    Article  CAS  Google Scholar 

  7. Sağ Y (2001) Biosorption of heavy metals by fungal biomass and modeling of fungal biosorption: a review. Sep Purif Methods 30(1):1–48. https://doi.org/10.1081/SPM-100102984

    Article  Google Scholar 

  8. Benila Smily J, Sumithra RM P, A (2017) Optimization of chromium biosorption by fungal adsorbent, Trichoderma sp. BSCR02 and its desorption studies. Hayati J Biosci 24(2):65–71. https://doi.org/10.1016/j.hjb.2017.08.005

    Article  Google Scholar 

  9. Urík M, Hlodák M, Mikušová P, Matúš P (2014) Potential of microscopic fungi isolated from mercury contaminated soils to accumulate and volatilize mercury(II). Water Air Soil Pollut 225(12):2219. https://doi.org/10.1007/s11270-014-2219-z

    Article  CAS  Google Scholar 

  10. Šimonovičová A, Nosalj S, Takáčová A, Mackuľak T, Jesenák K, Čerňanský S (2017) Responses of Aspergillus niger to selected environmental factors. Nova Biotechnol Chim 16(2):92–98. https://doi.org/10.1515/nbec-2017-0013

    Article  CAS  Google Scholar 

  11. Manrique LA (1986) The relationship of soil pH to aluminum saturation and exchangeable aluminum in ultisols and oxisols. Commun Soil Sci Plant Anal 17(4):439–455. https://doi.org/10.1080/00103628609367725

    Article  CAS  Google Scholar 

  12. Šimonovičová A, Hlinková E, Chovanová K, Pangallo D (2013) Influence of the environment on the morphological and biochemical characteristics of different Aspergillus niger wild type strains. Indian J Microbiol 53(2):187–193. https://doi.org/10.1007/s12088-012-0317-4

    Article  CAS  PubMed  Google Scholar 

  13. Nováková A (2012) Collection of microscopic fungi ISB—catalogue of strains. Institute of Soil Biology, Biology Centre AS CR, v.v.i., České Budějovice

    Google Scholar 

  14. Polák F, Urík M, Bujdoš M, Uhlík P, Matúš P (2018) Evaluation of aluminium mobilization from its soil mineral pools by simultaneous effect of Aspergillus strains’ acidic and chelating exometabolites. J Inorg Biochem 181:162–168. https://doi.org/10.1016/j.jinorgbio.2017.09.006

    Article  CAS  PubMed  Google Scholar 

  15. Gadd GM, Ramsay L, Crawford JW, Ritz K (2006) Nutritional influence on fungal colony growth and biomass distribution in response to toxic metals. FEMS Microbiol Lett 204(2):311–316. https://doi.org/10.1111/j.1574-6968.2001.tb10903.x

    Article  Google Scholar 

  16. Darlington AB, Rauser WE (1988) Cadmium alters the growth of the ectomycorrhizal fungus Paxillus involutes: a new growth model accounts for changes in branching. Can J Bot 66(2):225–229. https://doi.org/10.1139/b88-038

    Article  CAS  Google Scholar 

  17. Zwietering MH, Jongenburger I, Rombouts FM, van ‘t Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56(6):1875–1881

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zołotajkin M, Ciba J, Kluczka J, Skwira M, Smoliński A (2011) Exchangeable and bioavailable aluminium in the mountain forest soil of Barania Góra range (Silesian Beskids, Poland). Water Air Soil Pollut 216(1–4):571–580. https://doi.org/10.1007/s11270-010-0554-2

    Article  CAS  PubMed  Google Scholar 

  19. Jones DL, Prabowo AM, Kochian LV (1996) Aluminium-organic acid interactions in acid soils. Plant Soil 182(2):229–237. https://doi.org/10.1007/BF00029054

    Article  CAS  Google Scholar 

  20. Omeike SO, Kareem SO, Adewuiy S, Balogun SA (2013) Biosorption of aluminium from solution by dead Aspergillus oryzae biomass isolated from aluminium mills waste site. Ife J Sci 15(1):119–124

    Google Scholar 

  21. Gáplovská K, Šimonovičová A, Halko R, Okenicová L, Žemberyová M, Čerňanský S, Brandeburová P, Mackuľak T (2018) Study of the binding sites in the biomass of Aspergillus niger wild-type strains by FTIR spectroscopy. Chem Pap 72(9):2283–2288. https://doi.org/10.1007/s11696-018-0487-6

    Article  CAS  Google Scholar 

  22. Gadd GM (1990) Fungi and yeasts for metal binding. In: Ehrlich H, Brierley CL (eds) Microbial mineral recovery. McGraw-Hill, New York, pp 249–275

    Google Scholar 

  23. Boeris PS, Agustín MdR, Acevedo DF, Lucchesi GI (2016) Biosorption of aluminum through the use of non-viable biomass of Pseudomonas putida. J Biotechnol 236:57–63. https://doi.org/10.1016/j.jbiotec.2016.07.026

    Article  CAS  PubMed  Google Scholar 

  24. Boriová K, Urík M, Bujdoš M, Matúš P (2015) Bismuth(III) volatilization and immobilization by filamentous fungus Aspergillus clavatus during aerobic incubation. Arch Environ Contam Toxicol 68(2):405–411. https://doi.org/10.1007/s00244-014-0096-5

    Article  CAS  PubMed  Google Scholar 

  25. Urík M, Bujdoš M, Milová B (2014) Biologically induced mobilization of arsenic adsorbed onto amorphous ferric oxyhydroxides in aqueous solution during fungal cultivation. Water Air Soil Pollut. https://doi.org/10.1007/s11270-014-2172-x

    Article  Google Scholar 

  26. Boriová K, Urík M, Matúš P (2015) Biosorption, bioaccumulation, biovolatilization of potentially toxic elements by microorganisms. Chem Listy 109(2):109–112

    Google Scholar 

  27. Urík M, Boriová K, Bujdoš M, Matúš P (2016) Fungal selenium(VI) accumulation and biotransformation—filamentous fungi in selenate contaminated aqueous media remediation. CLEAN Soil Air Water 44(6):610–614. https://doi.org/10.1002/clen.201500100

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by funds obtained from the Scientific Grant Agency of Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences VEGA Nos. 1/0424/18 and 1/0354/19, and COST IS1408 Industrially Contaminated Sites and Health Network (ICSHNet).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Urík.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boriová, K., Čerňanský, S., Matúš, P. et al. Removal of aluminium from aqueous solution by four wild-type strains of Aspergillus niger. Bioprocess Biosyst Eng 42, 291–296 (2019). https://doi.org/10.1007/s00449-018-2033-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-2033-x

Keywords

Navigation