Skip to main content
Log in

The growth of Pichia pastoris Mut+ on methanol–glycerol mixtures fits to interactive dual-limited kinetics: model development and application to optimised fed-batch operation for heterologous protein production

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The methanol–glycerol co-feeding during the induction stage for heterologous protein production in Pichia pastoris has shown significant productive applications. Available model analysis applied to this dual-limited condition is scarce and normally does not consider the interaction effects between the substrates. In this work, a dual-limited growth model of P. pastoris considering an interactive kinetic effect was applied to an optimised fed-batch process production of heterologous Rhizopus oryzae lipase (ROL). In the proposed model, the growth kinetics on glycerol is fully expressed, whereas methanol kinetics is modulated by the co-metabolisation of glycerol, resulting in an enhancing effect of glycerol-specific growth rate. The modelling approach of fed-batch cultures also included the methanol volatilisation caused by the aeration that was found to be a not-negligible phenomenon. The model predicts the ability of P. pastoris to keep control of the methanol concentration in the broth during ROL-optimised production process in fed batch and fits satisfactorily the specific cell growth rate and ROL production. Implications of interaction effect are discussed applying the general procedure of modelling approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

µ:

Specific growth rate (h−1)

µin :

Enhancing growth rate parameter (h−1)

D:

Dilution rate (h−1)

X:

Biomass concentration (g l−1)

V:

Volume of broth (l)

S:

Substrate concentration (g l−1)

KS :

Half-saturation constant (g l−1)

KI :

Methanol inhibition constant (g l−1)

q:

Specific substrate consumption rate (g gX−1 h−1)

YX/G :

Glycerol yield coefficient (gX gG−1)

YX/M :

Methanol yield coefficient (gX gM−1)

\({Y_{X/G}}^{{Ov}}\) :

Overall glycerol yield coefficient (gX gG−1)

\({Y_{X/M}}^{{Ov}}\) :

Overall methanol yield coefficient (gX gM−1)

kev :

Volatilisation first-order constant (h−1)

qP :

Specific ROL productivity (UA gX−1 h−1)

F:

Feed rate (l h−1)

β(0, 1, 2, 3, 4, 5) :

Polynomial coefficients

Max:

Maximal

0:

Initial

M:

Methanol

G:

Glycerol

1:

Metabolic glycerol pathway

2:

Metabolic methanol pathway

f:

Feed

Des:

Designed

References

  1. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270. https://doi.org/10.1002/yea.1208

    Article  CAS  PubMed  Google Scholar 

  2. Potvin G, Ahmad A, Zhang Z (2012) Bioprocess engineering aspects of heterologous protein production in Pichia pastoris: a review. Biochem Eng J 64:91–105. https://doi.org/10.1016/j.bej.2010.07.017

    Article  CAS  Google Scholar 

  3. Looser V, Bruhlmann B, Bumbak F et al (2015) Cultivation strategies to enhance productivity of Pichia pastoris: a review. Biotechnol Adv 33:1177–1193

    Article  CAS  Google Scholar 

  4. Jungo C, Marison I, von Stockar U (2007) Mixed feeds of glycerol and methanol can improve the performance of Pichia pastoris cultures: a quantitative study based on concentration gradients in transient continuous cultures. J Biotechnol 128:824–837. https://doi.org/10.1016/j.jbiotec.2006.12.024

    Article  CAS  PubMed  Google Scholar 

  5. Xie J, Zhang L, Ye Q et al (2003) Angiostatin production in cultivation of recombinant Pichia pastoris fed with mixed carbon sources. Biotechnol Lett 25:173–177

    Article  Google Scholar 

  6. Lin J, Panigraphy D, Trinh LB et al (2000) Production process for recombinant human angiostatin in Pichia pastoris. J Ind Microbiol Biotechnol 24:31–35

    Article  CAS  Google Scholar 

  7. Hellwig S, Emde F, Raven N et al (2001) Analysis of single-chain antibody production in Pichia pastoris using on-line methanol control in fed-batch and mixed-feed fermentations. Biotechnol Bioeng 74:344–352

    Article  CAS  Google Scholar 

  8. D’Anjou MC, Daugulis AJ (2001) A rational approach to improving productivity in recombinant Pichia pastoris fermentation. Biotechnol Bioeng 72:1–11

    Article  Google Scholar 

  9. Katakura Y, Zhang W, Zhuang G et al (1998) Effect of methanol concentration on the production of human B2-glycoprotein I domain V by a recombinant Pichia pastoris: a simple system for the control of methanol concentration using a semiconductor gas sensor. J Ferment Bioeng 86:482–487

    Article  CAS  Google Scholar 

  10. Ferrer P, Alarcón M, Ramón R et al (2009) Recombinant Candida rugosa LIP2 expression in Pichia pastoris under the control of the AOX1 promoter. Biochem Eng J 46:271–277. https://doi.org/10.1016/j.bej.2009.05.018

    Article  CAS  Google Scholar 

  11. Zhou X-S, Lu J, Fan W-M, Zhang Y-X (2002) Development of a responsive methanol sensor and its application in Pichia pastoris fermentation. Biotech Lett 24:643–646

    Article  CAS  Google Scholar 

  12. Zhang W, Hywood KJ, Plantz BA et al (2003) Pichia pastoris fermentation with mixed-feeds of glycerol and methanol: growth kinetics and production improvement. J Ind Microbiol Biotechnol 30:210–215. https://doi.org/10.1007/s10295-003-0035-3

    Article  CAS  PubMed  Google Scholar 

  13. Çelik E, Çalık P, Oliver SG (2009) A structured kinetic model for recombinant protein production by Mut+ strain of Pichia pastoris. Chem Eng Sci 64:5028–5035. https://doi.org/10.1016/j.ces.2009.08.009

    Article  CAS  Google Scholar 

  14. Egli T, Käppeli O, Fiechter A (1982) Mixed substrate growth of methylotrophic yeasts in chemostat culture: Influence of dilution rate on the utilisation of a mixture of glucose and methanol. Arch Microbiol 131:8–13

    Article  CAS  Google Scholar 

  15. Paulová L, Hyka P, Branská B et al (2012) Use of a mixture of glucose and methanol as substrates for the production of recombinant trypsinogen in continuous cultures with Pichia pastoris Mut+. J Biotechnol 157:180–188. https://doi.org/10.1016/j.jbiotec.2011.10.010

    Article  CAS  PubMed  Google Scholar 

  16. Canales C, Altamirano C, Berrios J (2015) Effect of dilution rate and methanol–glycerol mixed feeding on heterologous Rhizopus oryzae lipase production with Pichia pastoris Mut+ phenotype in continuous culture. Biotechnol Prog 31:707–714. https://doi.org/10.1002/btpr.2069

    Article  CAS  PubMed  Google Scholar 

  17. Solá A, Jouhten P, Maaheimo H et al (2007) Metabolic flux profiling of Pichia pastoris grown on glycerol/methanol mixtures in chemostat cultures at low and high dilution rates. Microbiology 153:281–290. https://doi.org/10.1099/mic.0.29263-0

    Article  CAS  PubMed  Google Scholar 

  18. Unrean P (2013) Pathway analysis of Pichia pastoris to elucidate methanol metabolism and its regulation for production of recombinant proteins. Biotechnol Prog 30:28–37. https://doi.org/10.1002/btpr.1855

    Article  CAS  PubMed  Google Scholar 

  19. Bader FG (1978) Analysis of double-substrate limited growth. Biotechnol Bioeng 20:183–202. https://doi.org/10.1002/bit.260200203

    Article  CAS  PubMed  Google Scholar 

  20. Tsao GT, Hansson TP (1975) Extended Monod equation for batch cultures with multiple exponential phases. Biotechnol Bioeng 17:1591–1598. https://doi.org/10.1002/bit.260171104

    Article  Google Scholar 

  21. Schmitt E, Bura R, Gustafson R, Ehsanipour M (2016) Kinetic modeling of Moorella thermoacetica growth on single and dual-substrate systems. Bioprocess Biosyst Eng 39:1567–1575. https://doi.org/10.1007/s00449-016-1631-8

    Article  CAS  PubMed  Google Scholar 

  22. Mankad T, Bungay HR (1988) Model for microbial growth with more than one limiting nutrient. J Biotechnol 7:161–166

    Article  CAS  Google Scholar 

  23. Egli T, Lendenmann U, Snozzi M (1993) Kinetics of microbial growth with mixtures of carbon sources. Antonie Van Leeuwenhoek 63:289–298

    Article  CAS  Google Scholar 

  24. Neeleman R, Joerink M, Beuvery C, Van Boxtel T (2001) Dual-substrate utilization by Bordetella pertussis. Appl Microbiol Biotechnol 57:489–493. https://doi.org/10.1007/s002530100811

    Article  CAS  PubMed  Google Scholar 

  25. Minning S, Serrano A, Ferrer P et al (2001) Optimization of the high-level production of Rhizopus oryzae lipase in Pichia pastoris. J Biotechnol 86:59–70

    Article  CAS  Google Scholar 

  26. Cabrera Z, Gutarra MLE, Guisan JM, Palomo JM (2010) Highly enantioselective biocatalysts by coating immobilized lipases with polyethyleneimine. Catal Commun 11:964–967. https://doi.org/10.1016/j.catcom.2010.04.010

    Article  CAS  Google Scholar 

  27. Lee J, Chang HL, Parulekar SJ, Hong J (1991) An alternate method for estimation of cell growth kinetics from batch cultures. Biotechnol Bioeng 37:26–34. https://doi.org/10.1002/bit.260370106

    Article  CAS  PubMed  Google Scholar 

  28. Andrews JF (1968) A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol Bioeng 10:707–723

    Article  CAS  Google Scholar 

  29. Zhang T, Gong F, Peng Y, Chi Z (2009) Optimization for high-level expression of the Pichia guilliermondii recombinant inulinase in Pichia pastoris and characterization of the recombinant inulinase. Process Biochem 44:1335–1339. https://doi.org/10.1016/j.procbio.2009.07.008

    Article  CAS  Google Scholar 

  30. Trinh LB, Phue JN, Shiloach J (2003) Effect of methanol feeding strategies on production and yield of recombinant mouse endostatin from Pichia pastoris. Biotechnol Bioeng 82:438–444. https://doi.org/10.1002/bit.10587

    Article  CAS  PubMed  Google Scholar 

  31. Zhou X, Zhang Y (2002) Decrease of proteolytic degradation of recombinant hirudin produced by Pichia pastoris by controlling the specific growth rate. Biotech Lett 24:1449–1453

    Article  CAS  Google Scholar 

  32. Kovárová-Kovar K, Egli T (1998) Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol Mol Biol Rev 62:646–666

    PubMed  PubMed Central  Google Scholar 

  33. Görgens JF, van Zyl WH, Knoetze JH, Hahn-Hägerdal B (2001) The metabolic burden of the PGK1 and ADH2 promoter systems for heterologous xylanase production by Saccharomyces cerevisiae in defined medium. Biotechnol Bioeng 73:238–245

    Article  Google Scholar 

  34. Zhang W, Bevins MA, Plantz BA et al (2000) Modeling Pichia pastoris growth on methanol and optimizing the production of a recombinant protein, the heavy-chain fragment C of botulinum neurotoxin, serotype A. Biotechnol Bioeng 70:1–8

    Article  CAS  Google Scholar 

  35. Jahic M, Rotticci-Mulder J, Martinelle M et al (2002) Modeling of growth and energy metabolism of Pichia pastoris producing a fusion protein. Bioprocess Biosyst Eng 24:385–393. https://doi.org/10.1007/s00449-001-0274-5

    Article  CAS  Google Scholar 

  36. Curvers S, Linnemann J, Klauser T et al (2002) Recombinant protein production with Pichia pastoris in continuous fermentation—kinetic analysis of growth and product formation. Eng Life Sci 2:229–235

    Article  CAS  Google Scholar 

  37. Mendoza Muñoz DF, Algecira Enciso NA, Córdoba Ruiz H, Barrera Avellaneda LA (2008) A simple structured model for recombinant IDShr protein production in Pichia pastoris. Biotech Lett 30:1727–1734. https://doi.org/10.1007/s10529-008-9750-1

    Article  CAS  Google Scholar 

  38. Grady CJ, Smets B, Barbeau D (1996) Variability in kinetic parameter estimates: a review of possible causes and a proposed terminology. Water Res 30:742–748

    Article  CAS  Google Scholar 

  39. Cos O, Ramón R, Montesinos JL, Valero F (2006) Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microb Cell Fact 5:17. https://doi.org/10.1186/1475-2859-5-17

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schenk J, Balazs K, Jungo C et al (2008) Influence of specific growth rate on specific productivity and glycosylation of a recombinant avidin produced by a Pichia pastoris Mut+ strain. Biotechnol Bioeng 99:368–377. https://doi.org/10.1002/bit

    Article  CAS  PubMed  Google Scholar 

  41. Jacobs PP, Inan M, Festjens N et al (2010) Fed-batch fermentation of GM-CSF-producing glycoengineered Pichia pastoris under controlled specific growth rate. Microb Cell Fact 9:93. https://doi.org/10.1186/1475-2859-9-93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zalai D, Dietzsch C, Herwig C, Spadiut O (2012) A dynamic fed batch strategy for a Pichia pastoris mixed feed system to increase process understanding. Biotechnol Prog 28:878–886. https://doi.org/10.1002/btpr.1551

    Article  CAS  PubMed  Google Scholar 

  43. Spadiut O, Zalai D, Dietzsch C (2014) Quantitative comparison of dynamic physiological feeding profiles for recombinant protein production with Pichia pastoris. Bioprocess Biosyst Eng 37:1163–1172. https://doi.org/10.1007/s00449-013-1087-z

    Article  CAS  PubMed  Google Scholar 

  44. Zinn M, Witholt B, Egli T (2004) Dual nutrient limited growth: models, experimental observations, and applications. J Biotechnol 113:263–279. https://doi.org/10.1016/j.jbiotec.2004.03.030

    Article  CAS  PubMed  Google Scholar 

  45. Theron S, Berrios J, Delvigne F, Fickers P (2018) Integrating metabolic modeling and population heterogeneity analysis into optimizing recombinant protein production by Komagataella (Pichia) pastoris. Appl Microbiol Biotechnol 102:63–80

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Project N°11110486 from Fondo Nacional de Ciencia y Tecnología (FONDECYT, Chile). C. Canales wishes to thank Comisión Nacional de Investigación Científica y Tecnológica (CONICYT, Chile) for scholarship support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Berrios.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canales, C., Altamirano, C. & Berrios, J. The growth of Pichia pastoris Mut+ on methanol–glycerol mixtures fits to interactive dual-limited kinetics: model development and application to optimised fed-batch operation for heterologous protein production. Bioprocess Biosyst Eng 41, 1827–1838 (2018). https://doi.org/10.1007/s00449-018-2005-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-2005-1

Keywords

Navigation