Skip to main content
Log in

Biodegradation of surrogate naphthenic acids and electricity generation in microbial fuel cells: bioelectrochemical and microbial characterizations

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Waters contaminated with naphthenic acids (NAs) and associated tailings are one of the major environmental challenges associated with the processing of oil sands and production of heavy oil. In the current work biodegradation of linear and cyclic naphthenic acids, namely octanoic acid and 4-methyl-1-cyclohexane carboxylic acid (trans-4MCHCA), individually and in mixture were evaluated in microbial fuel cells (MFCs). In batch MFCs with single rod electrodes and freely suspended bacteria, biodegradation rate increased as NA initial concentration increased from 100 to 250 mg L−1 with no further improvement when a concentration of 500 mg L−1 was evaluated. During the co-biodegradation, diauxic microbial growth and preferential use of octanoic acid were observed. Moreover, the presence of octanoic acid enhanced the biodegradation of trans-4MCHCA. In the continuous flow MFCs with granular graphite electrodes and biofilm, increases in NA concentration and loading rate led to higher biodegradation rates and improvement of electrochemical output. Furthermore, MFC operated with octanoic acid outperformed its counterpart that was fed with trans-4MCHCA, with the maximum biodegradation rate, current and power densities for octanoic acid and trans-4MCHCA being 49.9 and 36.5 mg L−1 h−1, 6000.0 and 4296.3 mA m−3, and 963.0 and 481.5 mW m−3, respectively. Co-biodegradation of NAs in continuous flow MFCs with biofilm acclimated to octanoic acid or trans-4MCHCA revealed development of distinctly different microbial communities, simultaneous biodegradation of NAs albeit at faster rates for octanoic acid, and superior performance of MFC with the biofilm developed with trans-4MCHCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Oíl Sands Fact Sheet (2017) Canadian association of petroleum producers. http://www.capp.ca/publications-and-statistics/publications/305711. Accessed 21 Sept 2017

  2. Holowenko FM, MacKinnon MD, Fedorak PM (2001) Naphthenic acids and surrogate naphthenic acids in methanogenic microcosms. Water Res 35:2595–2606

    Article  CAS  PubMed  Google Scholar 

  3. Allen EW (2008) Process water treatment in Canada’s oil sands industry: I. Target pollutants and treatment objectives. J Environ Eng Sci 7:123–138

    Article  CAS  Google Scholar 

  4. MacKinnon MD, Boerger H (1986) Description of two treatment methods for detoxifying oil sand tailing pond water. Water Pollut Res J Canada 21:496–512

    CAS  Google Scholar 

  5. Pourrezaei P, Drzewicz P, Wang Y, Gamal El-Din M, Perez-Estrada LA, Martin JW, Anderson J, Wiseman S, Liber K, Giesy JP (2011) The impact of metallic coagulants on the removal of organic compounds from oil sands process-affected water. Environ Sci Technol 45:8452–8459

    Article  CAS  PubMed  Google Scholar 

  6. Alpatova A, Kim ES, Dong S, Sun N, Chelme-Ayala P, Gamal El-Din M (2014) Treatment of oil sands process-affected water with ceramic ultrafiltration membrane: effects of operating conditions on membrane performance. Sep Purif Technol 122:170–182

    Article  CAS  Google Scholar 

  7. Mohamed MH, Wilson LD, Headley JV, Peru KM (2008) Novel materials for environmental remediation of tailing pond waters containing naphthenic acids. Process Saf Environ Prot 86:237–243

    Article  CAS  Google Scholar 

  8. Pérez-Estrada LA, Han X, Drzewicz P, Gamal El-Din M, Fedorak PM, Martin JW (2011) Structure-reactivity of naphthenic acids in the ozonation process. Environ Sci Technol 45:7431–7437

    Article  PubMed  Google Scholar 

  9. Toor NS, Franz ED, Fedorak PM, MacKinnon MD, Liber K (2013) Degradation and aquatic toxicity of naphthenic acids in oil sands process-affected waters using simulated wetlands. Chemosphere 90:449–458

    Article  CAS  PubMed  Google Scholar 

  10. Allen EW (2008) Process water treatment in Canada’s oil sands industry: II. A review of emerging technologies. J Environ Eng Sci 7:499–524

    Article  CAS  Google Scholar 

  11. Quagraine EK, Peterson HG, Headley JV (2005) In situ bioremediation of naphthenic acids contaminated tailing pond waters in the Athabasca oil sands region—demonstrated field studies and plausible options: a review. J Environ Sci Health A Tox Hazard Subst Environ Eng 40:685–722

    Article  CAS  PubMed  Google Scholar 

  12. Xue J, Zhang Y, Liu Y, Gamal El-Din M (2016) Treatment of oil sands process-affected water (OSPW) using a membrane bioreactor with a submerged flat-sheet ceramic microfiltration membrane. Water Res 88:1–11

    Article  CAS  PubMed  Google Scholar 

  13. Demeter MA, Lemire J, George I, Yue G, Ceri H, Turner RJ (2014) Harnessing oil sands microbial communities for use in ex situ naphthenic acid bioremediation. Chemosphere 97:78–85

    Article  CAS  PubMed  Google Scholar 

  14. McKenzie N, Yue S, Liu X, Ramsay BA, Ramsay JA (2014) Biodegradation of naphthenic acids in oils sands process waters in an immobilized soil/sediment bioreactor. Chemosphere 109:164–172

    Article  CAS  PubMed  Google Scholar 

  15. Whitby C (2010) Microbial naphthenic Acid degradation. Adv Appl Microbiol 70:93–125

    Article  CAS  Google Scholar 

  16. Han X, Scott AC, Fedorak PM, Bataineh M, Martin JW (2008) Influence of molecular structure on the biodegradability of naphthenic acids. Environ Sci Technol 42:1290–1295

    Article  CAS  PubMed  Google Scholar 

  17. Herman DC, Fedorak PM, MacKinnon MD, Costerton JW (1994) Biodegradation of naphthenic acids by microbial populations indigenous to oil sands tailings. Can J Microbiol 40:467–477

    Article  CAS  PubMed  Google Scholar 

  18. Huang J, Nemati M, Hill G, Headley J (2012) Batch and continuous biodegradation of three model naphthenic acids in a circulating packed-bed bioreactor. J Hazard Mater 201:132–140

    Article  PubMed  Google Scholar 

  19. D’Souza L, Sami Y, Nemati M, Headley J (2014) Continuous Co-biodegradation of linear and cyclic naphthenic acids in circulating packed-bed bioreactors. Environ Prog Sustain Energy 33:835–843

    Article  Google Scholar 

  20. Islam MS, Dong T, Sheng Z, Zhang Y, Liu Y, Gamal El-Din M (2014) Microbial community structure and operational performance of a fluidized bed biofilm reactor treating oil sands process-affected water. Int Biodeterior Biodegrad 91:111–118

    Article  CAS  Google Scholar 

  21. Folwell BD, McGenity TJ, Price A, Johnson RJ, Whitby C (2016) Exploring the capacity for anaerobic biodegradation of polycyclic aromatic hydrocarbons and naphthenic acids by microbes from oil-sands-process-affected waters. Int Biodeterior Biodegrad 108:214–221

    Article  CAS  Google Scholar 

  22. Clothier LN, Gieg LM (2016) Anaerobic biodegradation of surrogate naphthenic acids. Water Res 90:156–166

    Article  CAS  PubMed  Google Scholar 

  23. Dong F, Nemati M (2016) Anoxic biodegradation of a surrogate naphthenic acid coupled to reduction of nitrite. Biochem Eng J 110:84–94

    Article  CAS  Google Scholar 

  24. Gunawan Y, Nemati M, Dalai A (2014) Biodegradation of a surrogate naphthenic acid under denitrifying conditions. Water Res 51:11–24

    Article  CAS  PubMed  Google Scholar 

  25. Martin JW, Barri T, Han X, Fedorak PM, El-Din MG, Perez L, Scott AC, Jiang JT (2010) Ozonation of oil sands process-affected water accelerates microbial bioremediation. Environ Sci Technol 44:8350–8356

    Article  CAS  PubMed  Google Scholar 

  26. Hwang G, Dong T, Islam MS, Sheng Z, Pérez-Estrada LA, Liu Y, Gamal El-Din M (2013) The impacts of ozonation on oil sands process-affected water biodegradability and biofilm formation characteristics in bioreactors. Bioresour Technol 130:269–277

    Article  CAS  PubMed  Google Scholar 

  27. Shi Y, Huang C, Rocha KC, El-Din MG, Liu Y (2015) Treatment of oil sands process-affected water using moving bed biofilm reactors: With and without ozone pretreatment. Bioresour Technol 192:219–227

    Article  CAS  PubMed  Google Scholar 

  28. Islam MS, Zhang Y, McPhedran KN, Liu Y, Gamal El-Din M (2016) Mechanistic investigation of industrial wastewater naphthenic acids removal using granular activated carbon (GAC) biofilm based processes. Sci Total Environ 541:238–246

    Article  CAS  PubMed  Google Scholar 

  29. Frankel ML, Bhuiyan TI, Veksha A, Demeter MA, Layzell DB, Helleur RJ, Hill JM, Turner RJ (2016) Removal and biodegradation of naphthenic acids by biochar and attached environmental biofilms in the presence of co-contaminating metals. Bioresour Technol 216:352–361

    Article  CAS  PubMed  Google Scholar 

  30. Jiang Y, Ulrich AC, Liu Y (2013) Coupling bioelectricity generation and oil sands tailings treatment using microbial fuel cells. Bioresour Technol 139:349–354

    Article  CAS  PubMed  Google Scholar 

  31. Choi J, Liu Y (2014) Power generation and oil sands process-affected water treatment in microbial fuel cells. Bioresour Technol 169:581–587

    Article  CAS  PubMed  Google Scholar 

  32. Paslawski JC, Headley JV, Hill GA, Nemati M (2009) Biodegradation kinetics of trans-4-methyl-1-cyclohexane carboxylic acid. Biodegradation 20:125–133

    Article  CAS  PubMed  Google Scholar 

  33. Moreno L, Nemati M, Predicala B (2017) Biodegradation of phenol in batch and continuous flow microbial fuel cells with rod and granular graphite electrodes. Environ Technol 1–13

  34. Logan BE (2008) Microbial fuel cells. Wiley, New York

    Google Scholar 

  35. Logan BE, Hamelers B, Rozendal E, Schroder U, Keller J, Freguia F, Alterman P, Verstraete L, Rabaey K (2006) Microbial fuel cells: Methodology and technology. Environ Sci Technol 40:5181–5192

    Article  CAS  PubMed  Google Scholar 

  36. Aelterman P, Rabaey K, Verstraete W (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Commun Agric Appl Biol Sci 40:3388–3394

    CAS  Google Scholar 

  37. Marsili E, Rollefson JB, Baron DB, Hozalski RM, Bond DR (2008) Microbial biofilm voltammetry: direct electrochemical characterization of catalytic electrode-attached biofilms. Appl Environ Microbiol 74:7329–7337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a Discovery Grants from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Nemati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valdes Labrada, G., Nemati, M. Biodegradation of surrogate naphthenic acids and electricity generation in microbial fuel cells: bioelectrochemical and microbial characterizations. Bioprocess Biosyst Eng 41, 1635–1649 (2018). https://doi.org/10.1007/s00449-018-1989-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-1989-x

Keywords

Navigation