Bioprocess and Biosystems Engineering

, Volume 41, Issue 11, pp 1589–1597 | Cite as

Study of a reactor model for enzymatic reactions in continuous mode coupled to an ultrasound bath for esters production

  • Mara Cristina P. Zenevicz
  • Artur Jacques
  • Maria Jose Arbulu Silva
  • Agenor FurigoJr.
  • Vladimir Oliveira
  • Débora de OliveiraEmail author
Research Paper


The main objective of this work was to investigate the enzymatic production of ethyl esters in continuous mode coupled to an ultrasound bath. For esterification reactions soybean free fatty acids (FFA) and ethanol were used as substrates, and Novozym 435 and Lipozyme TL IM, as catalysts. The experimental system consisted of a packed bed glass reactor immersed in an ultrasound bath and the following variables were studied: ethanol to FFA molar ratio of 1:1, 1:3 and 1:6, substrates flow rate of 2.5 and 5 mL/min, at 65 °C and 132 W ultrasound power output. It was noticed that the excess alcohol favored the esterification reaction with the best conversions observed, 95%, at 6 min reaction for 1:6 FFA to ethanol molar ratio, 2.5 mL/min feeding flow rate. Increasing the substrates feeding flow rate decreased the conversion down to 87% and replacing the Novozym 435 by Lipozyme TL IM no satisfactory conversions were achieved. This type of reactor demonstrated good performance for ethyl esters production, opening promising perspectives for use in the production of other types of esters such as those aromatic and others with high value.


Continuous mode Ultrasound bath Ethyl esters Lipases 



The authors thank CNPq and CAPES for the scholarships and financial support of this work. The authors gratefully acknowledge the technical support from Transfertech S.A and Novozymes/DK.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.


  1. 1.
    Vulfson EN, Woolley P, Petersen SB (1994) Lipases: their structure, biochemistry and application. Cambridge University Press, Cambridge (Grã Bretanha 271)Google Scholar
  2. 2.
    Lu W, Alam MA, Pan Y, Wu JC, Wang ZM, Yuan ZH (2016) A new approach of microalgal biomass pretreatment using deep eutectic solvents for enhanced lipid recovery for biodiesel production. Bioresour Technol 218:123–128CrossRefPubMedGoogle Scholar
  3. 3.
    Sajjadi B, Raman AAA, Arandiyan H (2016) A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: composition, specifications and prediction models. Renew Sustain Energy Rev 63:62–92CrossRefGoogle Scholar
  4. 4.
    Adewale P, Dumont MJ, Ngadi M (2015) Recent trends of biodiesel production from animal fat wastes and associated production techniques. Renew Sustain Energy Rev 45:574–588CrossRefGoogle Scholar
  5. 5.
    Wang ZM, Lee JS, Park JY, Wu CZ, Yuan ZH (2007) Novel biodiesel production technology from soybean soapstock. Korean J Chem Eng 24:1027–1030CrossRefGoogle Scholar
  6. 6.
    Wang ZM, Lee JS, Park JY, Wu CZ, Yuan ZH (2008) Optimization of biodiesel production from trap grease via acid catalysis. Korean J Chem Eng 25:670–674CrossRefGoogle Scholar
  7. 7.
    Encinar JM, Gonzalez JF, Sabio E, Ramiro MJ (1999) Preparation and properties of biodiesel from Cynara cardunculus L. Oil Ind Eng Chem Res 38:2927–2931CrossRefGoogle Scholar
  8. 8.
    Neves AA (2008) Avaliação do aproveitamento de óleos alimentares usados para produção de biodiesel na área metropolitana do Porto. MD thesis, Universidade do Porto. PortoGoogle Scholar
  9. 9.
    Lima JR, Nassu RT (1996) Substitutod de gorduras em alimentos: características e aplicações. Química Nova 19:127–134Google Scholar
  10. 10.
    Gandhi NN (1997) Applications of lipases. J Am Oil Chem Soc 74:621–634CrossRefGoogle Scholar
  11. 11.
    Kwiatkowska B, Bennett J, Akunna J, Walker GM, Bremner DH (2011) Stimulation of bioprocesses by ultrasound. Biotechnol Adv 29:768–780CrossRefPubMedGoogle Scholar
  12. 12.
    Yu D, Tian L, Wu H, Wan S, Wang Y, Ma D, Fang X (2010) Ultrasonic irradiation with vibration for biodiesel production from soybean oil by Novozym 435. Process Biochem 45:519–525CrossRefGoogle Scholar
  13. 13.
    Chandrapala J, Oliver C, Kentish S, Ashokkumar M (2012) Ultrasonics in food processing. Ultrason Sonochem 19:975–983CrossRefPubMedGoogle Scholar
  14. 14.
    Babicz I, Leite SGF, de Souza ROMA, Antunes OAC (2010) Lipase-catalyzed diacylglycerol production under sonochemical irradiation. Ultrason Sonochem 17:4–6CrossRefPubMedGoogle Scholar
  15. 15.
    Klima J, Bernard C, Degrand 23r5fg0C (1994) Sonoelectrochemistry: effects of ultrasound on voltammetric measurements at a solid electrode. J Electroanal Chem 367:297–300CrossRefGoogle Scholar
  16. 16.
    Tinkov S, Bekeredjian R, Winter G, Coester C (2009) Microbubbles as ultrasound triggered drug carriers. J Pharm Sci 98:1935–1961CrossRefPubMedGoogle Scholar
  17. 17.
    Braginskaya FI, Zaitzava EA, Zorna OM, Poltrak OM, Chukrai ES, Dunn F (1990) Low intensity ultrasonic effects on yeast hexokinase. Radiat Environ Biophys 29:47–56CrossRefPubMedGoogle Scholar
  18. 18.
    Zhu K, Liu H, Han P, Wei P (2003) Study of ultrasound-promoted, lipase-catalyzed synthesis of fructose ester, Front. of: using ultrasound for enhanced microbial productivity. Trends Biotechnol 21:89–93CrossRefGoogle Scholar
  19. 19.
    Gebicka L, Gekicki JL (1997) The effect of ultrasound on heme enzymes in aqueous solution. J Enzyme Inhib 12:133–141CrossRefPubMedGoogle Scholar
  20. 20.
    Ishimori Y, Karube I, Suzuki S (1981) Acceleration of immobilized a-chymotrypsin activity with ultrasonic irradiation. J Mol Catal A Chem 12:253–259CrossRefGoogle Scholar
  21. 21.
    Sinisterra JV (1992) Application of ultrasound to biotechnology: an overview. Ultrasonics 30:180–184CrossRefPubMedGoogle Scholar
  22. 22.
    Ozbek B, U¨ lgen KO (2000) The stability of enzymes after sonication. Process Biochem 35:1037–1043CrossRefGoogle Scholar
  23. 23.
    Chand P, Chintareddy VR, Verkade JG, Grewell D (2010) Enhancing biodiesel production from soybean oil using ultrasonics. Energy Fuels 24:2010–2015CrossRefGoogle Scholar
  24. 24.
    Ji J, Wang J, Li Y, Yu Y, Xu Z (2006) Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation. Ultrasonics 44:411–414CrossRefGoogle Scholar
  25. 25.
    Lifka J, Ondruschka B (2004) Influence of mass transfer on the production of biodiesel. Chem Eng Technol 27:1156–1159CrossRefGoogle Scholar
  26. 26.
    Liu Y, Jin Q, Shan L, Liu Y, Shen W, Wang X (2008) The effect of ultrasound on lipase-catalyzed hydrolysis of soy oil in solvent-free system. Ultrason Sonochem 5:402–407CrossRefGoogle Scholar
  27. 27.
    Suslick KS (1988) Ultrasound: its chemical, physical and biological effects. VCH Publishers, New YorkGoogle Scholar
  28. 28.
    Kardos N, Luche J (2001) Sonochemistry of carbohydrate compounds. Carbohydr Res 32:115–131CrossRefGoogle Scholar
  29. 29.
    Bezbradica D, Mijin D, Siler-Marinkovic S, Knezevic Z (2006) The Candida rugosa lipase catalyzed synthesis of amyl isobutyrate in organic solvent and solvent-free system: a kinetic study. J Mol Catal B Enzym 38:11–16CrossRefGoogle Scholar
  30. 30.
    Rokhina EV, Lens P, Virkutyte J (2009) Low-frequency ultrasound in biotechnology: state of the art. Trends Biotechnol 27:298–306CrossRefPubMedGoogle Scholar
  31. 31.
    Al-Zuhair S, Almenhli A, Hamad I, Alshehhi M, Alsuwaidi N, Mohamed S (2011) Enzymatic production of biodiesel from used/waste vegetable oils: design of pilot plant. Renew Energy 36:2605–2614CrossRefGoogle Scholar
  32. 32.
    Baltaru R, Galaction AI, Cascaval D (2009) Bioreactors of “Basket” type with immobilized biocatalysts. In: wseas international conference on biomedical electronic and biomedical informatics, P. 238-243-ISBN: 978-960-474-110-6, ISSN: 1790–5125Google Scholar
  33. 33.
    Chang C, Chen CJ, Wu T, Shieh C (2009) Otimização of lipase-catalyzed biodiesel by isopropamolysis in a continuous packed-bed reactor using response surface methodology. N Biotechnol 26:3–4, 187–192Google Scholar
  34. 34.
    Chen HC, Chen J, Chang C, Shieh C (2011) Optimization of ultrasound-accelerated synthesis of enzymatic caffeic acid phenethyl ester by response surface methodology. Ultrason Sonochem 18:455–459CrossRefPubMedGoogle Scholar
  35. 35.
    Halim SFA, Kamaruddin AH, Fernando WJN (2009) Continuous biosynthesis of biodiesel from waste cooking palm oil in a packed bed reactor: optimization using response surface methodology (RSM) and mass transfer studies. Bioresour Technol 100:710–716CrossRefPubMedGoogle Scholar
  36. 36.
    Wang X, Liu X, Zhao CM, Ding Y, Xu P (2011) Biodiesel production in packed-bed reactors using lipase–nanoparticle biocomposite. Bioresour Technol 102:6352–6355CrossRefPubMedGoogle Scholar
  37. 37.
    Gog A, Roman M, Tosa M, Paizs C, Irimie FD (2012) Biodiesel production using enzymatic transesterification—current state and perspectives. Renew Energy 39:10–16CrossRefGoogle Scholar
  38. 38.
    Royon D, Daz M, Ellenrieder G, Locatelli S (2007) Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresour Technol 98:648–652CrossRefPubMedGoogle Scholar
  39. 39.
    Shimada Y, Watanabe Y, Sugihara A, Tominga Y (2002) Enzymatic alcoholysis for biodiesel fuel production and application and application of the reaction to oil processing. J Mol Catal B: Enzym 17:133–142CrossRefGoogle Scholar
  40. 40.
    Hsu AF, Jones KC, Foglia TA, Marmer WN (2004) Continuous production of ethyl esters of grease using an immobilized lipase. Chem Soc 81:749–752Google Scholar
  41. 41.
    Nie K, Xie F, Wang F, Tan T (2006) Lipase catalyzed methanolysis to produce biodiesel: optimization of the biodiesel production. J Mol Catal B Enzym 43:142–147CrossRefGoogle Scholar
  42. 42.
    Oliveira D, Feihrmann AC, Rubira AF, Kunita MH, Dariva C, Oliveira JV (2006) Assessment of two immobilized lipases activity treated in compressed fluids. J Supercrit Fluids 38:373–382CrossRefGoogle Scholar
  43. 43.
    Dalla Rosa CD, Morandim MB, Ninow JL, Oliveira D, Treichel H, Oliveira JV (2009) Produção enzimática de biodiesel em modo contínuo em meio pressurizado. Bioresource Technol 100:5818–5826CrossRefGoogle Scholar
  44. 44.
    Santin CM (2013) Síntese de biodiesel pela transesterificação e esterificação enzimática em sistema livre de solvente em banho de ultrassom. PhD thesis. Universidade Regional Integrada do Alto Uruguai e das Missões–URI, Erechim, RS, BrasilGoogle Scholar
  45. 45.
    Demirbas A (2005) Biodiesel production from vegetable oils via catalytic and noncatalytic supercritical methanol transesterification methods. Prog Energy Combust Sci 31:466CrossRefGoogle Scholar
  46. 46.
    Reyero I, Arzamendi G, Zabala S, Gandía LM (2015) Kinetics of the NaOH-catalyzed transesterification of sunflower oil with ethanol to produce biodiesel. Fuel Process Technol 129:147–155CrossRefGoogle Scholar
  47. 47.
    Stamenković OS, Veličković AV, Veljković VB (2011) The production of biodiesel from vegetable oils by ethanolysis: current state and perspectives. Fuel 90:3141–3155CrossRefGoogle Scholar
  48. 48.
    Brunschwig C, Moussavou W, Blin J (2010) Use of bioethanol for biodiesel production. Prog Energy Combust Sci 38:283–301CrossRefGoogle Scholar
  49. 49.
    Yu D, Tian L, Hao, Wu C, Wang YW, Ma D, Fang X (2010) Ultrasonic irradiation with vibration for biodiesel production from soybean oil by Novozym 435. Process Biochem 45:519–525CrossRefGoogle Scholar
  50. 50.
    Patel A, Brahmkhatri V, Singh N (2013) Biodiesel production by esterification of free fatty acid over sulfated zirconia. Renew Energy 51:227–233CrossRefGoogle Scholar
  51. 51.
    Miethchen R (1992) Aplicações selecionadas de sonoquímica em química orgânica. Ultrasonics 30:173–179CrossRefGoogle Scholar
  52. 52.
    Mason TJ (1997) Ultrasound em química orgânica sintética. Chem Soc Rev 26:443–451CrossRefGoogle Scholar
  53. 53.
    Zhou SJ, Hawley MC (2003) Estudo do efeito de aumento da taxa de reação ultrassônica na adesão de polímeros e compósitos. Compos Struct 61: 303–309CrossRefGoogle Scholar
  54. 54.
    Sinisterra JV (1992) Aplicação do ultra-som à biotecnologia: uma visão geral. Ultrasonics 30 :180–185CrossRefPubMedGoogle Scholar
  55. 55.
    Lin G, Liu H (1995) Ultrasound promoveu reações catalisadas por lipase. Tetrahedron Lett 36:6067–6068CrossRefGoogle Scholar
  56. 56.
    Trentin CM (2010) Estudo da cinética de transesterificação não-catalítica de óleo de soja com co-solvente em reator micro tubo. MD thesis, Universidade Regional Integrada do Alto Uruguai e das Missões–URI, Erechim, RS, BrasilGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mara Cristina P. Zenevicz
    • 1
  • Artur Jacques
    • 1
  • Maria Jose Arbulu Silva
    • 1
  • Agenor FurigoJr.
    • 1
  • Vladimir Oliveira
    • 1
  • Débora de Oliveira
    • 1
    Email author
  1. 1.Department of Chemical and Food EngineeringUFSCFlorianópolisBrazil

Personalised recommendations