Bioprocess and Biosystems Engineering

, Volume 41, Issue 9, pp 1355–1370 | Cite as

Enhanced production of carotenoids using a Thraustochytrid microalgal strain containing high levels of docosahexaenoic acid-rich oil

  • Hansung Park
  • Minsoo Kwak
  • JeongWoo Seo
  • JeongHyun Ju
  • SunYeon Heo
  • SeungMoon ParkEmail author
  • WonKyung HongEmail author
Research Paper


Results to date suggest that microalgal Thraustochytrids family strains can be used to produce high-functional omega-3 rich oil (~ 30–70% of dry cell weight) and carotenoid-based antioxidant pigments simultaneously with value-added bioactive potential. In the present study, we describe the isolation and characterization of a new Thraustochytrid Schizochytrium sp. from the west coastal area of Korea. This newly isolated Thraustochytrid, identified as Schizochytrium sp. through 18S rRNA analysis and named SH104, simultaneously produces high levels of DHA and carotenoid-based antioxidant pigments. An improved Schizochytrium mutant, named SHG104, was obtained from the original host strain by γ-irradiation-induced mutagenesis. Under combined temperature-shift cultivation conditions employing white-light LEDs (light-emitting diodes), Schizochytrium sp. SHG104 yielded 10.8 g L−1 of biomass comprising 45.8% total lipids (32.1% DHA) and 4.6 mg L−1 of astaxanthin. In addition to DHA, the main fatty acids produced by Schizochytrium sp. SHG104 were palmitic acid and a trace of other long-chain fatty acids. The carotenoid profile of SH104 and SHG104 was β-carotene, astaxanthin, canthaxanthin, pheonicoxanthin and echinenone, which analyzed by HPLC and LC/APCI–MS. Furthermore, genomic analysis of Schizochytrium and Aurantiochytrium microalgae confirmed that the presence of carotenogenesis pathway enzymes and genes including geranylgeranyl diphosphate, phytoene synthase, lycopene cyclase, and cytochrome P450 hydroxylase that necessary for the production of antioxidants via a complete biosynthetic KEGG synthesis pathway. This newly isolated Schizochytrium microalga potentially have wide application as a source of antioxidants for astaxanthin-containing pigments, commercial omega-3 lipids and feed additives, such as nutritional supplements for aquaculture.


Thraustochytrid Schizochytrium Antioxidant Astaxanthin DHA Carotenogenesis 



This research was supported by a grant from the Next Generation BioGreen 21 project through the Animal Genome Breeding Project Team funded by the Rural Development Administration of Korea (PJ01182502).

Supplementary material

449_2018_1963_MOESM1_ESM.doc (28 kb)
Supplementary material 1 (DOC 27 KB)
449_2018_1963_MOESM2_ESM.tif (133 kb)
Supplementary material 2 (TIF 132 KB)
449_2018_1963_MOESM3_ESM.tif (115 kb)
Supplementary material 3 (TIF 114 KB)
449_2018_1963_MOESM4_ESM.tif (88 kb)
Supplementary material 4 (TIF 87 KB)


  1. 1.
    Boeuf G, Kornprobst JM (2009) Biodiversity and marine chemodiversity. Biofutur 301:28–32Google Scholar
  2. 2.
    Raghukumar S (2008) Thraustochytrid marine protists: production of PUFAs and other emerging technologies. Mar Biotechnol 10:631–640. CrossRefPubMedGoogle Scholar
  3. 3.
    Martins DA, Custodio L, Barreira L, Pereira H, Ben-Hamadou R, Varela J, Abu-Salah KM (2013) Alternative sources of n-3 long-chain polyunsaturated fatty acids in marine microalgae. Mar Drugs 11:2259–2281. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Campoy C, Escolano-Margarit MV, Anjos T, Szajewska H, Uauy R, Br (2012) Omega 3 fatty acids on child growth, visual acuity and neurodevelopment. Br J Nutr 107(Suppl 2):S85–106. CrossRefGoogle Scholar
  5. 5.
    Jacobson TA (2006) Secondary prevention of coronary artery disease with omega-3 fatty acids. Am J Cardiol 98(4A):61i–70i. CrossRefGoogle Scholar
  6. 6.
    Kris-Etherton PM, Harris WS, Appel LJ (2002) Fish consumption, fish oil, omega-3 fatty acids and cardiovascular disease. Circulation 106:2747–2757. CrossRefPubMedGoogle Scholar
  7. 7.
    Pottala JV, Garg S, Cohen BE, Whooley MA, Harris WS (2010) Blood eicosapentaenoic and docosahexaenoic acids predict all-cause mortality in patients with stable coronary heart disease: the heart and soul study. Circ Cardiovasc Qual Outcomes 3:406–12. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Riediger ND, Othman RA, Suh M, Moghadasian MH (2009) A systemic review of the roles of n-3 fatty acids in health and disease. J Am Diet Assoc 109:668–79. CrossRefPubMedGoogle Scholar
  9. 9.
    de Morais MG, da Silva Vaz B, de Morais EG, Costa JAV (2015) Biologically active metabolites synthesized by microalgae. Biomed Res Int 2015:1–15. CrossRefGoogle Scholar
  10. 10.
    Cuellar-Bermudez SP, Aguilar-Hernandez I, Cardenas-Chavez DL, Ornelas-Soto N, Romero-Ogawa MA, Parra-Saldivar R (2015) Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microb Biotechnol 8:190–209. CrossRefPubMedGoogle Scholar
  11. 11.
    Yokoyama R, Honda D (2007) Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomic characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. nov. Mycoscience 48:199–211. CrossRefGoogle Scholar
  12. 12.
    Aki T, Hachida K, Yoshinaga M, Katai Y, Yamasaki T, Kawamoto S, Kakizono T, Maok T, Shigeta S, Suzuki O, Ono K (2003) Thraustochytrid as a potential source of carotenoids. J Am Oil Chem Soc 80:789–794. CrossRefGoogle Scholar
  13. 13.
    Burja AM, Radianingtyas H, Windust A, Barrow CJ (2006) Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: screening of strains and optimization of omega-3 production. Appl Microbiol Biotechnol 72:1161–1169. CrossRefPubMedGoogle Scholar
  14. 14.
    Yuan JP, Peng J, Yin K, Wang JH (2011) Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nutr Food Res 55:150–65. CrossRefPubMedGoogle Scholar
  15. 15.
    Fiedor J, Burda K (2014) Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6:466–488. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ye ZW, Jiang JG, Wu GH (2008) Biosynthesis and regulation of carotenoids in Dunaliella: progresses and prospects. Biotechnol Adv 26:352–60, CrossRefGoogle Scholar
  17. 17.
    Aasen IM, Ertesvåg H, Heggeset TM, Liu B, Brautaset T, Vadstein O, Ellingsen TE (2016) Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids. Appl Microbiol Biotechnol 100:4309–4321. CrossRefPubMedGoogle Scholar
  18. 18.
    Chuyen VH, Eun JB (2017) Marine carotenoids: bioactivities and potential benefits to human health. Crit Rev Food Sci Nutr 57:2600–2610. CrossRefPubMedGoogle Scholar
  19. 19.
    Ra CH, Kang CH, Jung JH, Jeong GT, Kim SK (2016) Enhanced biomass production and lipid accumulation of Picochlorum atomus using light-emitting diodes (LEDs). Bioresour Technol 218:1279–1283. CrossRefPubMedGoogle Scholar
  20. 20.
    Hultberg M, Jönsson HL, Bergstrand KJ, Carlsson AS (2014) Impact of light quality on biomass production and fatty acid content in the microalga Chlorella vulgaris. Bioresour Technol 159:465–467. CrossRefPubMedGoogle Scholar
  21. 21.
    Reddy LVA, Wee YJ, Yun JS, Ryu HW (2008) Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett–Burman and response surface methodological approaches. Bioresour Technol 99:2242–2249. CrossRefPubMedGoogle Scholar
  22. 22.
    Nahemiah D, Nkama I, Badau MH (2015) Application of response surface methodology (RSM) and central composite design (CCD) to optimize minerals composition of rice-cowpea composite blends during extrusion cooking. Int J Food Sci Nutr Eng 5:40–52. CrossRefGoogle Scholar
  23. 23.
    Eisenreich W, Bacher A, Arigoni D, Rohdich F (2004) Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci 61:1401–1426. CrossRefPubMedGoogle Scholar
  24. 24.
    Lichtenthaler HK (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65. CrossRefPubMedGoogle Scholar
  25. 25.
    Miziorko HM (2011) Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch Biochem Biophys 505:131–143. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Armstrong GA (1997) Genetics of eubacterial carotenoid biosynthesis: a colorful tale. Annu Rev Microbiol 51:629–659.
  27. 27.
    Sandmann G (1994) Carotenoid biosynthesis in microorganisms and plants. Eur J Biochem 223:7–24. CrossRefPubMedGoogle Scholar
  28. 28.
    Britton G (1998) Overview of carotenoid biosynthesis. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids: biosynthesis and metabolism. vol 3. Birkhäuser, Basel, 13–147Google Scholar
  29. 29.
    Takaichi S, Mochimaru M (2007) Carotenoids and carotenogenesis in cyanobacteria: unique ketocarotenoids and carotenoid glycosides. Cell Mol Life Sci 64:2607–2619. CrossRefPubMedGoogle Scholar
  30. 30.
    Bertrand M (2010) Carotenoid biosynthesis in diatoms. Photosynth Res 106:89–102. CrossRefPubMedGoogle Scholar
  31. 31.
    Li Y, Sommerfeld M, Chen F, Hu Q (2010) Effect of photon flux densities on regulation of carotenogenesis and cell viability of Haematococcus pluvilis. J Appl Phycol 22:253–263. CrossRefPubMedGoogle Scholar
  32. 32.
    Ojima K, Breitenbach J, Visser H, Setoguchi Y, Tabata K, Hoshino T, van den Berg J, Sandmann G (2006) Cloning of the astaxanthin synthase gene from Xanthophyllomyces dendrorhous (Phaffia rhodozyma) and its assignment as a beta-carotene 3-hydroxylase/4-ketolase. Mol Gen Genom 275:148–158. CrossRefGoogle Scholar
  33. 33.
    Adams PB, Lawson S, Sanigorski A, Sinclair AJ (1996) Arachidonic acid to eicosapentaenoic acid ratio in blood correlates positively with clinical symptoms of depression. Lipids 31:157–161. CrossRefGoogle Scholar
  34. 34.
    Romieu I, Tellez-Rojo MM, Lazo M, Manzano-Patino A, Cortez-Lugo M, Julien P, Belanger MC, Hernandez-Avila M, Holguin F (2005) Omega-3 fatty acid prevents heart rate variability reductions associated with particulate matter. Am J Respir Crit Care Med 172:1534–1540. CrossRefPubMedGoogle Scholar
  35. 35.
    Von Schacky C, Harris WS (2007) Cardiovascular benefits of omega-3 fatty acids. Cardiovasc Res 73:310–315. CrossRefGoogle Scholar
  36. 36.
    Balk E, Chung M, Lichtenstein A, Chew P, Kupelnick B, Lawrence A, DeVine D, Lau J (2004) Effects of omega-3 fatty acids on cardiovascular risk factors and intermediate markers of cardiovascular disease. Evid Rep Technol Assess (Summ) 93:1–6.
  37. 37.
    von Schacky C (2008) Omega-3 fatty acids: antiarrhythmic, proarrhythmic or both? Curr Opin Clin Nutr Metab Care 11:94–99. CrossRefGoogle Scholar
  38. 38.
    Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96. CrossRefPubMedGoogle Scholar
  39. 39.
    Frommolt R, Werner S, Paulsen H, Goss R, Wilhelm C, Zauner S, Maier UG, Grossman AR, Bhattacharya D, Lohr M (2008) Ancient recruitment by chromists of green algal genes encoding enzymes for carotenoid biosynthesis. Mol Biol Evol 25:2653–2667. CrossRefPubMedGoogle Scholar
  40. 40.
    Ye C, Qiao W, Yu X, Ji X, Huang H, Collier JL, Liu L (2015) Reconstruction and analysis of the genome-scale metabolic model of Schizochytrium limacinum SR21 for docosahexaenoic acid production. BMC Genom 16:799. CrossRefGoogle Scholar
  41. 41.
    Garcia-Vedrenne AE, Groner M, Page-Karjian A, Siegmund GF, Singhal S, Sziklay J, Roberts S (2013) Development of genomic resources for a Thraustochytrid pathogen and investigation of temperature influences on gene expression. PLoS One 8(9):e74196. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hong WK, Rairakhwada D, Seo PS, Park SY, Hur BK, Kim CH, Seo JW (2011) Production of lipids containing high levels of docosahexaenoic acid by a newly isolated microalga, Aurantiochytrium sp. KRS101. Appl Biochem Biotechnol 164:1468–1480. CrossRefPubMedGoogle Scholar
  43. 43.
    Wua MC, Hou CY, Jiang CM, Wang YT, Wang CY, Chen HH, Chang HM (2007) A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chem 101:1753–1758. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hansung Park
    • 1
  • Minsoo Kwak
    • 2
  • JeongWoo Seo
    • 3
  • JeongHyun Ju
    • 3
  • SunYeon Heo
    • 3
  • SeungMoon Park
    • 1
    Email author
  • WonKyung Hong
    • 1
    Email author
  1. 1.Division of Biotechnology, College of Environmental and Bioresource ScienceChonbuk National UniversityIksanSouth Korea
  2. 2.Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonSouth Korea
  3. 3.Applied Microbial Research Center, Jeonbuk Branch InstituteKorea Research Institute of Bioscience and Biotechnology (KRIBB)JeongeupSouth Korea

Personalised recommendations