Skip to main content
Log in

Characterization of mixing and yield stress of pretreated wheat straw slurries used for the production of biofuels through tomography technique

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Wheat straw is a low-cost feedstock for the production of biofuel. Pretreatment process is an important stage in producing biofuels since it makes the fibers more accessible to enzymatic hydrolysis which is the final step of producing biofuels. Pretreated wheat straw (PWS) slurries are non-Newtonian fluids with yield stress. Mixing of fluids exhibiting yield stress such as the pretreated wheat straw slurry results in the generation of cavern, which is a fully-mixed zone, around the impeller and the stationary regions elsewhere, which causes difficulties in the production of biofuels. In this study, the non-invasive electrical resistance tomography technique was utilized to determine the cavern dimensions as a function of the impeller type and impeller speed. The cavern sizes were then used to measure the yield stress of PWS slurries as a function of fiber size (≤ 2 and ≤ 6 mm) and fiber concentration (6, 8, and 10 wt%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

2D:

Two dimensions

DAS:

Data acquisition system

ERT:

Electrical resistance tomography

PWS:

Pretreated wheat straw

WS:

Wheat straw

D :

Impeller diameter (m)

D c :

Cavern diameter (m)

g :

Gravitational acceleration (m/s2)

H :

Fluid height in the vessel (m)

H c :

Cavern height (m)

M :

Torque (N m)

n :

Power-law index (–)

N :

Impeller rotational speed (s−1)

P :

Power (W)

P o :

Power number (–)

P 1P 4 :

Plane number (–)

T :

Tank diameter (m)

τ y :

Fluid yield stress (Pa)

References

  1. Meher LC, Sagar DV, Naik SN (2006) Renew Sust Energy Rev 10:248–268

    Article  CAS  Google Scholar 

  2. Balat M (2011) Energy Convers Manag 52:858–875

    Article  CAS  Google Scholar 

  3. Schmidt AS, Thomsen AB (1998) Bioresour Technol 64:139–151

    Article  CAS  Google Scholar 

  4. Volynets B, Dahman Y (2011) Int J Energy Environ 2:427–446

    CAS  Google Scholar 

  5. Buranov AU, Mazza G (2008) Ind Crop Prod 28:237–259

    Article  CAS  Google Scholar 

  6. Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G (2006) Trends Biotechnol 24(12):541–556

    Article  CAS  Google Scholar 

  7. Dien BS, Cotta MA, Jeffries TW (2003) Appl Microbiol Biotechnol 63:258–266

    Article  CAS  PubMed  Google Scholar 

  8. Sarkar N, Ghosh S, Bannerjee S, Aikat K (2012) Renew Energy 37:19–27

    Article  CAS  Google Scholar 

  9. Patel SJ, Onkarappa R, Gurumurty SB (2009) Internet J Microbiol 7(1):63–65

    Google Scholar 

  10. Taherzadeh MJ, Karimi K (2008) Int J Mol Sci 9:1621–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Taherzadeh MJ, Karimi K (2007) Bioresources 2:472–499

    CAS  Google Scholar 

  12. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Bioresour Technol 101:4851–4861

    Article  CAS  PubMed  Google Scholar 

  13. Lu XB, Zhang YM, Yang J, Liang Y (2007) Chem Eng Technol 30(7):938–944

    Article  CAS  Google Scholar 

  14. Saha BC, Iten LB, Cotta MA, Wu YV (2005) Process Biochem 40:3693–3700

    Article  CAS  Google Scholar 

  15. Shekiro J, Kuhn E, Nagle N, Tucker M, Elander R, Schell D (2014) Biotechnol Biofuels 5:7–23

    Google Scholar 

  16. Dong T, Knoshaug E, Davis R, Laurens L, Wychen S, Pienkos P, Nagle N (2017) Algal Res 27:43–54

    Article  Google Scholar 

  17. Pimenova NV, Hanley AR (2004) Appl Biochem Biotechnol 113:347–360

    Article  PubMed  Google Scholar 

  18. Stickel JJ, Knutsen JS, Liberatore MW, Luu W, Bousfield DW, Klingenberg DJ, Scott CT, Root TW, Ehrhardt MR, Monz T (2009) Rheol Acta 48:1005–1015

    Article  CAS  Google Scholar 

  19. Wiman M, Palmqvist B, Tornberg E, Liden G (2011) Biotechnol Bioeng 108:1031–1041

    Article  CAS  PubMed  Google Scholar 

  20. Movafagh H, Turcotte G, Ein-Mozaffari F (2016) Biofuels 7(4):365–375

    Article  CAS  Google Scholar 

  21. Dasari R, Berson RE (2007) Appl Biochem Biotechnol 136–140:289–299

    Google Scholar 

  22. Viamajala S, McMillan JD, Schell DJ, Elander RT (2009) Bioresour Technol 100:925–934

    Article  CAS  PubMed  Google Scholar 

  23. Wichterle K, Wein O (1975) CHISA 75:Paper B.4.6

    Google Scholar 

  24. Solomon J, Elson TP, Nienow AW (1981) Chem Eng Commun 11:143–164

    Article  CAS  Google Scholar 

  25. Elson TP, Cheesman DJ, Nienow AW (1986) Chem Eng Sci 41(10):2555–2562

    Article  CAS  Google Scholar 

  26. Amanullah A, Hjorth SA, Nienow AW (1998) Chem Eng Sci 53(3):455–469

    Article  CAS  Google Scholar 

  27. Patel D, Ein-Mozaffari F, Mehrvar M (2014) AIChE J 60(1):315–331

    Article  CAS  Google Scholar 

  28. Hou W, Zhang L, Zhang J, Bao J (2016) Biochem Eng J 105:412–419

    Article  CAS  Google Scholar 

  29. Pakzad L, Ein-Mozaffari F, Upreti SR (2013) Chem Eng Commun 200(12):1553 1577

    Article  CAS  Google Scholar 

  30. Barber CD, Brown BH, Freeston IL (1983) Electron Lett 19:933–935

    Article  Google Scholar 

  31. Pooja NS, Padmaja G (2015) Waste Biomass Valor 6:303–315

    Article  CAS  Google Scholar 

  32. Al Jibouri A (2012) M.A.Sc thesis, Ryerson University

  33. Pakzad L, Ein-Mozaffari F, Chan P (2008) Chem Eng Sci 63:2508 2522

    Article  CAS  Google Scholar 

  34. Ein-Mozaffari F, Bennington CPJ, Dumont GA (2005) Chem Eng Sci 60:2399–2408

    Article  CAS  Google Scholar 

  35. Bennington CPJ, Kerekes RJ, Grace JR, Can J (1990) Chem Eng 68:748–757

    CAS  Google Scholar 

  36. Pakzad L, Ein-Mozaffari F, Chan P (2008) Chem Eng Technol 12:1838–1845

    Article  CAS  Google Scholar 

  37. Saeed S, Ein-Mozaffari F, Upreti SR (2008) Ind Eng Chem Res 47(19):7465 7475

    Article  CAS  Google Scholar 

  38. Galindo E, Nienow AW (1992) Biotechnol Progr 8(3):223–239

    Article  Google Scholar 

  39. Ehrhardt MR, Monz TO, Root TW, Connelly RK, Scott CT, Klingenberg DJ (2010) App Biochem Biotechnol 160:1102–1115

    Article  CAS  Google Scholar 

  40. Samaniuk J, Scott T, Root T, Klingenberg DJ (2012) Rheol 56:649–665

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) (RGPIN-2014-03957) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Ein-Mozaffari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naghavi-Anaraki, Y., Turcotte, G. & Ein-Mozaffari, F. Characterization of mixing and yield stress of pretreated wheat straw slurries used for the production of biofuels through tomography technique. Bioprocess Biosyst Eng 41, 1315–1328 (2018). https://doi.org/10.1007/s00449-018-1959-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-1959-3

Keywords

Navigation