Skip to main content

Advertisement

Log in

Mechanistic simulation of batch acetone–butanol–ethanol (ABE) fermentation with in situ gas stripping using Aspen Plus™

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Process simulations of batch fermentations with in situ product separation traditionally decouple these interdependent steps by simulating a separate “steady state” continuous fermentation and separation units. In this study, an integrated batch fermentation and separation process was simulated for a model system of acetone–butanol–ethanol (ABE) fermentation with in situ gas stripping, such that the fermentation kinetics are linked in real-time to the gas stripping process. A time-dependent cell growth, substrate utilization, and product production is translated to an Aspen Plus batch reactor. This approach capitalizes on the phase equilibria calculations of Aspen Plus to predict the effect of stripping on the ABE fermentation kinetics. The product profiles of the integrated fermentation and separation are shown to be sensitive to gas flow rate, unlike separate steady state fermentation and separation simulations. This study demonstrates the importance of coupled fermentation and separation simulation approaches for the systematic analyses of unsteady state processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Koutinas M, Kiparissides A, Pistikopoulos EN, Mantalaris A (2012) Bioprocess systems engineering: transferring traditional process engineering principles to industrial biotechnology. Comput Struct Biotechnol J 3(4):1–9

    Article  Google Scholar 

  2. Darkwah K, Knutson BL, Seay J (2018) A perspective on challenges and prospects for applying process systems engineering tools to fermentation-based biorefineries. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.7b03762

    Article  Google Scholar 

  3. Sirigudi RR (2005) Biomass to ethanol: process simulation, validation and sensitivity analysis of a gasifier and a bioreactor. Thesis, Oklahoma State University

  4. Abdehagh N, Tezel FH, Thibault J (2014) Separation techniques in butanol production: challenges and developments. Biomass Bioenergy 60:222–246

    Article  CAS  Google Scholar 

  5. Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68

    Article  CAS  Google Scholar 

  6. Ponce GH et al (2015) Simulation, analysis and optimization of sugar concentration in an in situ gas stripping fermentation process for bioethanol production. Chem Eng Trans 43:319–324

    Google Scholar 

  7. Ezeji TC, Qureshi N, Blaschek HP (2003) Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping. World J Microbiol Biotechnol 19(6):595–603

    Article  CAS  Google Scholar 

  8. Qureshi N, Blaschek H (2001) Recent advances in ABE fermentation: hyper-butanol producing Clostridium beijerinckii BA101. J Ind Microbiol Biotechnol 27(5):287–291

    Article  CAS  PubMed  Google Scholar 

  9. Ezeji TC, Qureshi N, Blaschek H (2013) Microbial production of a biofuel (acetone–butanol–ethanol) in a continuous bioreactor: impact of bleed and simultaneous product removal. Bioprocess Biosyst Eng 36(1):109–116

    Article  CAS  PubMed  Google Scholar 

  10. Vane LM (2008) Separation technologies for the recovery and dehydration of alcohols from fermentation broths. Biofuels Bioprod Biorefin 2(6):553–588

    Article  CAS  Google Scholar 

  11. Shuler ML, Kargi F (2009) Bioprocess engineering basic concepts. Prentice Hall, New Jersey

    Google Scholar 

  12. Mesfun S et al (2013) Techno-economic evaluation of butanol production via black liquor fractionation. In: Proceedings of 12th international conference on sustainable energy technologies. Hong Kong: Faculty of Construction and Environment and Research Institute for Sustainable Urban Development, The Hong Kong Polytechnic University, China

  13. Van der Merwe AB (2010) Evaluation of different process designs for biobutanol production from sugarcane molasses. Thesis, University of Stellenbosch

  14. Wu M, Wang M, Liu J, Huo H (2007) Life-cycle assessment of corn-based butanol as a potential transportation fuel. ANL/ESD/07–10; Argonne National Laboratory: Chicago, Illinois, https://doi.org/10.2172/925379

  15. Liu J, Wu M, Wang M (2009) Simulation of the process for producing butanol from corn fermentation. Ind Eng Chem Res 48(11):5551–5557

    Article  CAS  Google Scholar 

  16. Nilsson R et al (2014) Techno-economics of carbon preserving butanol production using a combined fermentative and catalytic approach. Bioresour Technol 161(0):263–269

    Article  CAS  PubMed  Google Scholar 

  17. Aspen Technolgy Inc (2015) Aspen Plus V8.8 help and documentation

  18. Votruba J, Volesky B, Yerushalmi L (1986) Mathematical model of a batch acetone–butanol fermentation. Biotechnol Bioeng 28(2):247–255

    Article  CAS  PubMed  Google Scholar 

  19. Carlson EC (1996) Don’t gamble with physical properties for simulations. Chem Eng Prog 92(10):35–46

    CAS  Google Scholar 

  20. Hill D, Justice FC (2011) Understand thermodynamics to improve process simulations. Chem Eng Prog 107:20–25

    CAS  Google Scholar 

  21. Dürre P (2008) Fermentative Butanol Production. Ann NY Acad Sci 1125(1):353–362

    Article  CAS  PubMed  Google Scholar 

  22. Ezeji TC, Qureshi N, Blaschek HP (2004) Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl Microbiol Biotechnol 63(6):653–658

    Article  CAS  PubMed  Google Scholar 

  23. Ezeji TC et al (2005) Improving performance of a gas stripping-based recovery system to remove butanol from Clostridium beijerinckii fermentation. Bioprocess Biosyst Eng 27(3):207–214

    Article  CAS  PubMed  Google Scholar 

  24. Ennis B et al (1986) Continuous product recovery by in-situ gas stripping/condensation during solvent production from whey permeate using Clostridium acetobutylicum. Biotechnol Lett 8(10):725–730

    Article  CAS  Google Scholar 

  25. Ezeji TC, Qureshi N, Blaschek HP (2007) Production of acetone butanol (AB) from liquefied corn starch, a commercial substrate, using Clostridium beijerinckii coupled with product recovery by gas stripping. J Ind Microbiol Biotechnol 34(12):771–777

    Article  CAS  PubMed  Google Scholar 

  26. Maddox IS, Qureshi N, Roberts-Thomson K (1995) Production of acetone-butanol-ethanol from concentrated substrate using clostridium acetobutylicum in an integrated fermentation-product removal process. Process Biochem 30(3):209–215

    CAS  Google Scholar 

  27. Lu C, Dong J, Yang S-T (2013) Butanol production from wood pulping hydrolysate in an integrated fermentation–gas stripping process. Bioresour Technol 143:467–475

    Article  CAS  PubMed  Google Scholar 

  28. Cai D et al (2016) Acetone–butanol–ethanol from sweet sorghum juice by an immobilized fermentation-gas stripping integration process. Bioresour Technol 211:704–710

    Article  CAS  PubMed  Google Scholar 

  29. Xue C et al (2013) Two-stage in situ gas stripping for enhanced butanol fermentation and energy-saving product recovery. Bioresour Technol 135(0):396–402

    Article  CAS  PubMed  Google Scholar 

  30. Qureshi N et al (2008) Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part I—batch fermentation. Biomass Bioenergy 32(2):168–175

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This manuscript is based on the work funded by the USDA-NIFA Biomass Research and Development Initiative (BRDI # 68-3A75-7-608) and an NSF EPSCoR Track-2 RII, Award No. OIA1632854.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara L. Knutson.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 318 KB)

Appendices

Appendix A

Ordinary differential equations representation of the fermentation kinetics of a batch culture of Clostridium acetobutylicum [18]:

$$\frac{{{\text{d}}{m_{\text{z}}}}}{{{\text{d}}t}}={k_1}{m_{\text{S}}}\frac{{{K_{\text{I}}}}}{{{K_{\text{I}}}+{m_{\text{B}}}}}{m_{\text{z}}} - 0.56\left( {{m_{\text{z}}} - 1} \right){m_{\text{z}}},$$
(8)
$$\frac{{{\text{d}}{m_{\text{q}}}}}{{{\text{d}}t}}=0.56({m_{\text{z}}} - 1){m_{\text{q}}} - {k_2}{m_{\text{B}}}{m_{\text{q}}},$$
(9)
$$\frac{{{\text{d}}{m_{\text{S}}}}}{{{\text{d}}t}}= - {k_3}{m_{\text{S}}}{m_{\text{q}}} - {k_4}\frac{{{m_{\text{S}}}}}{{{K_{\text{S}}}+{m_{\text{S}}}}}{m_{\text{q}}},$$
(10)
$$\frac{{{\text{d}}{m_{{\text{BA}}}}}}{{{\text{d}}t}}={k_5}{m_{\text{S}}}\frac{{{K_{\text{I}}}}}{{{K_{\text{I}}}+{m_{\text{B}}}}}{m_{\text{q}}} - {k_6}\frac{{{m_{{\text{BA}}}}}}{{{K_{{\text{BA}}}}+{m_{{\text{BA}}}}}}{m_{\text{q}}},$$
(11)
$$\frac{{{\text{d}}{m_{\text{B}}}}}{{{\text{d}}t}}={k_7}{m_{\text{S}}}{m_{\text{q}}} - 0.841\frac{{{\text{d}}{m_{{\text{BA}}}}}}{{{\text{d}}t}},$$
(12)
$$\frac{{{\text{d}}{m_{{\text{AA}}}}}}{{{\text{d}}t}}={k_8}\frac{{{m_S}}}{{{K_{\text{S}}}+{m_{\text{S}}}}}\frac{{{K_{\text{I}}}}}{{{K_{\text{I}}}+{m_{\text{B}}}}}{m_{\text{q}}} - {k_9}\frac{{{m_{{\text{AA}}}}}}{{{K_{{\text{AA}}}}+{m_{{\text{AA}}}}}}\frac{{{m_{\text{S}}}}}{{{K_{\text{S}}}+{m_{\text{S}}}}}{m_{\text{q}}},$$
(13)
$$\frac{{{\text{d}}{m_{\text{A}}}}}{{{\text{d}}t}}={k_{10}}\frac{{{m_{\text{S}}}}}{{{K_{\text{S}}}+{m_{\text{S}}}}}{m_{\text{q}}} - 0.484\frac{{{\text{d}}{m_{{\text{AA}}}}}}{{{\text{d}}t}},$$
(14)
$$\frac{{{\text{d}}{m_{\text{E}}}}}{{{\text{d}}t}}={k_{11}}\frac{{{m_{\text{S}}}}}{{{K_S}+{m_{\text{S}}}}}{m_{\text{q}}},$$
(15)
$$\frac{{{\text{d}}{m_{{\text{C}}{{\text{O}}_2}}}}}{{{\text{d}}t}}={k_{12}}\frac{{{m_{\text{S}}}}}{{{K_{\text{S}}}+{m_{\text{S}}}}}{m_{\text{q}}},$$
(16)
$$\frac{{{\text{d}}{m_{{{\text{H}}_2}}}}}{{{\text{d}}t}}={k_{13}}\frac{{{m_{\text{S}}}}}{{{K_{\text{S}}}+{m_{\text{S}}}}}{m_{\text{q}}}+{k_{14}}{m_{\text{S}}}{m_{\text{q}}}.$$
(17)

Appendix B

Parameter definition for the kinetic model and their respective values

k 1 :

kinetic constant in Eq. 8, = 0.009 L/g-substrate/h

k 2 :

kinetic constant in Eq. 9, = 0.0008 L/g-butanol/h

k 3 :

kinetic constant in Eq. 10, = 0.0255 L/g-biomass/h

k 4 :

kinetic constant in Eq. 10, = 0.6764 g-substrate/g-biomass/h

k 5 :

kinetic constant in Eq. 11, = 0.0136 g-butyric acid L/g-substrate/g-biomass/h

k 6 :

kinetic constant in Eq. 11, = 0.1170 g-butyric acid/g-biomass/h

k 7 :

kinetic constant in Eq. 12, = 0.0113 g-butanol L/g-substrate/g-biomass/h

k 8 :

kinetic constant in Eq. 13, = 0.7150 g-acetic acid/g-biomass/h

k 9 :

kinetic constant in Eq. 13, = 0.1350 g-acetic acid/g-biomass/h

k 10 :

kinetic constant in Eq. 14, = 0.1558 g-acetone/g-biomass/h

k 11 :

kinetic constant in Eq. 15, = 0.0258 g-ethanol/g-biomass/h

k 12 :

kinetic constant in Eq. 16, = 0.6139 g-carbon dioxide/g-biomass/h

k 13 :

kinetic constant in Eq. 17, = 0.0185 g-hydrogen/g-biomass/h

k 14 :

kinetic constant in Eq. 17, = 0.00013 g-hydrogen L /g-substrate/g-biomass/h

K I :

inhibition constant, = 0.833 g-butanol/L

K S :

Monod constant, = 2.0 g-substrate/L

K BA :

saturation constant, = 0.5 g-butyric acid/L

K AA :

saturation constant, = 0.5 L/g-acetic acid/L

m A :

acetone concentration, g/L

m B :

butanol concentration, g/L

m E :

ethanol concentration, g/L

m BA :

butyric acid concentration, g/L

m AA :

acetic acid concentration, g/L

m S :

glucose concentration, g/L

m q :

cell biomass concentration, g/L

\({m_{{\text{C}}{{\text{O}}_{\text{2}}}}}\) :

carbon dioxide concentration, g/L

\({m_{{{\text{H}}_{\text{2}}}}}\) :

hydrogen concentration, g/L

m z :

marker of the physiological state culture, dimensionless

Appendix C

Stoichiometric equations (Eqs. 1822) used together with stoichiometric coefficients relative to glucose [13,14,15,16]. The stoichiometric coefficients used in the stoichiometric reactor were 0.319, 0.495, 0.080, 0.120, 0 (mole of product/mole of glucose fed) for acetone, butanol, ethanol, acetic and butyric acids, respectively, calculated from the model of Votruba et al. [18]:

$${{\text{C}}_{\text{6}}}{{\text{H}}_{{\text{12}}}}{{\text{O}}_{\text{6}}} \to {\text{ }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{1}}0}}{\text{O }}\left( {{\text{butanol}}} \right){\text{ }}+{\text{ 2C}}{{\text{O}}_{\text{2}}}+{\text{ }}{{\text{H}}_{\text{2}}}{\text{O,}}$$
(18)
$${{\text{C}}_{\text{6}}}{{\text{H}}_{{\text{12}}}}{{\text{O}}_{\text{6}}}+{\text{ }}{{\text{H}}_{\text{2}}}{\text{O }} \to {\text{ }}{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{6}}}{\text{O }}\left( {{\text{acetone}}} \right){\text{ }}+{\text{ 3C}}{{\text{O}}_{\text{2}}}+{\text{ 4}}{{\text{H}}_{\text{2}}},$$
(19)
$${{\text{C}}_{\text{6}}}{{\text{H}}_{{\text{12}}}}{{\text{O}}_{\text{6}}} \to {\text{ 2}}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}{\text{O }}\left( {{\text{ethanol}}} \right){\text{ }}+{\text{ 2C}}{{\text{O}}_{\text{2}}}+{\text{ }}{{\text{H}}_{\text{2}}},$$
(20)
$${{\text{C}}_{\text{6}}}{{\text{H}}_{{\text{12}}}}{{\text{O}}_{\text{6}}} \to {\text{ }}{{\text{C}}_{\text{4}}}{{\text{H}}_{\text{8}}}{{\text{O}}_{\text{2}}}\,\left( {{\text{butyric acid}}} \right){\text{ }}+{\text{ 2C}}{{\text{O}}_{\text{2}}}+{\text{ 2}}{{\text{H}}_{\text{2}}},$$
(21)
$${{\text{C}}_{\text{6}}}{{\text{H}}_{{\text{12}}}}{{\text{O}}_{\text{6}}} \to {\text{ 3}}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{4}}}{{\text{O}}_{\text{2}}}\,\left( {{\text{acetic acid}}} \right).$$
(22)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darkwah, K., Nokes, S.E., Seay, J.R. et al. Mechanistic simulation of batch acetone–butanol–ethanol (ABE) fermentation with in situ gas stripping using Aspen Plus™. Bioprocess Biosyst Eng 41, 1283–1294 (2018). https://doi.org/10.1007/s00449-018-1956-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-1956-6

Keywords