Bioprocess and Biosystems Engineering

, Volume 41, Issue 7, pp 1017–1028 | Cite as

Production of ethanol and xylitol by Trametes membranacea

  • Silvana Rissi
  • Roselei Claudete Fontana
  • Mateus Arduvino Reck
  • Rosa Mara Borges da Silveira
  • Aldo José Pinheiro Dillon
  • Marli Camassola
Research Paper


The potential to produce ethanol and xylitol from xylose by the macro basidiomycete Trametes membranacea was evaluated. All strains studied showed ethanol and xylitol production. The highest ethanol production of xylose was obtained by T. membranacea strain TM158/10 with 5.65 ± 0.21 g/L at pH 4 and 28 °C with 288 h of fermentation and 5.59 ± 0.05 g/L ethanol concentration at pH 5 and 24 °C with 360 h of fermentation. When the conversion was carried out using sugars generated from enzymatic hydrolysis of sugarcane bagasse, there were higher yields from 74 to 15% for ethanol and xylitol, respectively. Although the ethanol and xylitol production need to be optimized, this study showed for the first time the possibility of using T. membranacea for the simultaneous xylitol and ethanol production from pentose sugars, allowing for the possibility of using all released sugars during the hydrolysis of lignocelluloses.


Lignocellulosic biomass Basidiomycota Ethanol Xylitol Biorefineries 



The authors acknowledge the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul-FAPERGS (11/2063-3), the Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq (472153/2013-7), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES (3255/2013) the Universidade de Caxias do Sul (UCS) for financial support of this work. M. A. Reck thanks CNPq for the scholarship. S.R. thanks FAPERGS for the scholarship.


  1. 1.
    Gomez LD, Steele-King CG, McQueen-Mason SJ (2008) Sustainable liquid biofuels from biomass: the writing’s on the walls. New Phytol 178:473–485CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Menegol D, Scholl AL, Dillon AJP, Camassola M (2016) Influence of different chemical pretreatments of elephant grass (Pennisetum purpureum, Schum.) used as a substrate for cellulase and xylanase production in submerged cultivation. Bioprocess Biosyst Eng 39:1455–1464CrossRefPubMedGoogle Scholar
  3. 3.
    Saha B (2003) Hemicellulose bioconversion. J Ind Microb Biotechnol 30:279–291CrossRefGoogle Scholar
  4. 4.
    Sánchez C (2009) Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194CrossRefPubMedGoogle Scholar
  5. 5.
    Ebringerová A, Hromádková Z, Heinze T (2005) Hemicellulose. In: Heinze T (ed) Polysaccharides I: structure, characterization and use. Springer, Berlin, Heidelberg, pp 1–67Google Scholar
  6. 6.
    López-Abelairas M, Álvarez Pallín M, Salvachúa D, Lú-Chau T, Martínez MJ, Lema JM (2013) Optimisation of the biological pretreatment of wheat straw with white-rot fungi for ethanol production. Bioprocess Biosyst Eng 36:1251–1260CrossRefPubMedGoogle Scholar
  7. 7.
    Cheng KK, Ling HZ, Zhang JA et al (2010) Strain isolation and study on process parameters for xylose-to-xylitol bioconversion. Biotechnol Biotechnolog Equip 24:1606–1611CrossRefGoogle Scholar
  8. 8.
    dos Reis L, Schneider W, Fontana R, Camassola M, Dillon AP (2014) Cellulase and xylanase expression in response to different pH levels of Penicillium echinulatum S1M29 medium. BioEnerg Res 7:60–67CrossRefGoogle Scholar
  9. 9.
    Jeon WY, Shim WY, Lee SH, Choi JH, Kim JH (2013) Effect of heterologous xylose transporter expression in Candida tropicalis on xylitol production rate. Bioprocess Biosyst Eng 36:809–817CrossRefPubMedGoogle Scholar
  10. 10.
    Okamoto K, Imashiro K, Akizawa Y et al (2010) Production of ethanol by the white-rot basidiomycetes Peniophora cinerea and Trametes suaveolens. Biotechnol Lett 32:909–913CrossRefPubMedGoogle Scholar
  11. 11.
    Jeya M, Zhang YW, Kim IW, Lee JK (2009) Enhanced saccharification of alkali-treated rice straw by cellulase from Trametes hirsuta and statistical optimization of hydrolysis conditions by RSM. Bioresour Technol 100:5155–5161CrossRefPubMedGoogle Scholar
  12. 12.
    Dias AA, Freitas GS, Marques GS et al (2010) Enzymatic saccharification of biologically pre-treated wheat straw with white-rot fungi. Bioresour Technol 101:6045–6050CrossRefPubMedGoogle Scholar
  13. 13.
    Huang C-F, Jiang Y-F, Guo G-L, Hwang W-S (2011) Development of a yeast strain for xylitol production without hydrolysate detoxification as part of the integration of co-product generation within the lignocellulosic ethanol process. Bioresour Technol 102:3322–3329CrossRefPubMedGoogle Scholar
  14. 14.
    Okamoto K, Kanawaku R, Masumoto M, Yanase H (2012) Efficient xylose fermentation by the brown rot fungus Neolentinus lepideus. Enzyme Microb Technol 50:96–100CrossRefPubMedGoogle Scholar
  15. 15.
    Zadrazil F, Brunnert H (1982) Solid state fermentation of lignocellulose containing plant residues with Sporotrichum pulverulentum Nov and Dichomitus squalens (Karst.) Reid. Eur J Appl Microbiol Biotechnol 16:45–51CrossRefGoogle Scholar
  16. 16.
    Levonen-Munoz E, Bone DH, Daugulis AJ (1983) Solid state fermentation and fractionation of oat straw by Basidiomycetes. Appl Microbiol Biotechnol 18:120–123CrossRefGoogle Scholar
  17. 17.
    Sasaki K, Sasaki D, Sakihama Y et al (2013) Ethanol fermentation by xylose-assimilating Saccharomyces cerevisiae using sugars in a rice straw liquid hydrolysate concentrated by nanofiltration. Bioresour Technol 147:84–88CrossRefPubMedGoogle Scholar
  18. 18.
    Xiong M, Chen G, Barford J (2014) Genetic engineering of yeasts to improve ethanol production from xylose. J Taiwan Inst Chem Eng 45:32–39CrossRefGoogle Scholar
  19. 19.
    Okamoto K, Uchii A, Kanawaku R, Yanase H (2014) Bioconversion of xylose, hexoses and biomass to ethanol by a new isolate of the white rot basidiomycete Trametes versicolor. SpringerPlus 3:121CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Okamoto K, Nitta Y, Maekawa N, Yanase H (2011) Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta. Enzyme Microb Technol 48:273–277CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Silvana Rissi
    • 1
  • Roselei Claudete Fontana
    • 1
  • Mateus Arduvino Reck
    • 2
  • Rosa Mara Borges da Silveira
    • 2
  • Aldo José Pinheiro Dillon
    • 1
  • Marli Camassola
    • 1
  1. 1.Enzymes and Biomass LaboratoryCaxias do Sul University-Biotechnology InstituteCaxias do SulBrazil
  2. 2.Laboratory of Mycology, Department of BotanyInstitute of Biosciences, Federal University of Rio Grande do Sul-UFRGSPorto AlegreBrazil

Personalised recommendations