Bioprocess and Biosystems Engineering

, Volume 41, Issue 6, pp 851–857 | Cite as

Efficient and low-cost alternative of lipase concentration aiming at the application in the treatment of waste cooking oils

  • Karina P. Preczeski
  • Angela B. Kamanski
  • Thamarys Scapini
  • Aline F. Camargo
  • Tatiani A. Modkoski
  • Vanusa Rossetto
  • Bruno Venturin
  • Jéssica Mulinari
  • Simone M. Golunski
  • Altemir J. Mossi
  • Helen Treichel
Research Paper


In this study, we evaluated the concentration of lipases from Aspergillus niger using efficient and low-cost methods aiming at application in the treatment of waste cooking oils. The change in ionic strength of the medium by the addition of salt and precipitation with ethanol increased the specific activity from 2.90 to 28.50 U/mg, resulting in a purification factor of 9.82-fold. The use of acetone resulted in a specific activity of 33.63 U/mg, resulting in a purification factor of 11.60-fold. After that, the concentrated lipase was used in the hydrolysis of waste cooking oil and 753.07 and 421.60 µmol/mL of free fatty acids were obtained for the enzyme precipitated with ethanol and acetone, respectively. The hydrolysis of waste cooking oil catalyzed by homemade purified lipase in ultrasonic media can be considered a pretreatment of oil by converting a significant amount of triglycerides into free fatty acids.


Homemade lipases Precipitation Waste cooking oil 



CAPES, FAPERGS, and CNPq are acknowledged for financial support.


  1. 1.
    Castro HF, Mendes AA, Santos JC, Aguiar CL (2004) Modificação de óleos e gorduras por biotransformação. Quím Nova 27:146–156CrossRefGoogle Scholar
  2. 2.
    Pandey A, Benjamin S, Soccol CR, Nigam P, Krieger N, Thomaz-Soccol V (1999) The realm of microbial lipases in biotechnology. Biotechnol App Biochem 65:252–254Google Scholar
  3. 3.
    Cunha AG, Besteti M, Manoel EA, Silva AAT, Almeida RV, Simas AB, Fernandez-Lafuente R, Pinto JC (2014) Preparation of core–shell polymer supports to immobilize lipase B from Candida antarctica effect of the support nature on catalytic properties. J Mol Catal B-Enzym 100:59–67CrossRefGoogle Scholar
  4. 4.
    Ayaz B, Ugur A, Boran R (2015) Purification and characterization of organic solvent tolerant lipases from Streptomyces sp. OC119-7 for biodiesel production. Biocatal Agric Biotechnol 4:103–108Google Scholar
  5. 5.
    Gururaj SR, Ganesan ND, Pennathur G (2016) Process optimization for production and purification of a thermostable, organic solvent tolerant lipase from Acinetobacter sp. AU07 P. Braz J Microbiol 47:647–657CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ishihara T, Yamamoto S (2005) Optimization of monoclonal antibody purification by ion-exchange chromatography. Application of simple methods with linear gradient elution experimental data. J Chromatogr A 1069:99–106CrossRefPubMedGoogle Scholar
  7. 7.
    Moraes CC, Kalil SJ (2009) Strategy for a protein purification design using C-phycocyanin extract. Bioresour Technol 100:5312–5317CrossRefPubMedGoogle Scholar
  8. 8.
    Gill PK, Manhas RK, Singh P (2006) Purification and properties of a heat-stable exo-inulinase isoform from Aspergillus fumigatus. Bioresour Technol 97:894–902CrossRefPubMedGoogle Scholar
  9. 9.
    Cui L, Du G, Zhang D, Liu H, Chen J (2007) Purification and characterization of transglutaminase from a newly isolated Streptomyces hygroscopicus. Food Chem 105:612–618CrossRefGoogle Scholar
  10. 10.
    Martins TS (2001) Produção e purificação de lipases de Yarrowia lipolytica (IMUFRJ 50682), Dissertação de Mestrado. Centro de Ciências da Saúde, Universidade Federal de Rio de Janeiro, Rio de JaneiroGoogle Scholar
  11. 11.
    Cortez EV, Pessoa AJR (1999) Xylanase and β-xylosidase separation by fractional precipitation. Process Biochem 35:277–283CrossRefGoogle Scholar
  12. 12.
    Gupta R, Beg O, Lorenz P (2012) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:15–32Google Scholar
  13. 13.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  14. 14.
    Pinto-Coelho RM (2009) Reciclagem e desenvolvimento sustentável no Brasil. Recóleo Coleta e Reciclagem de Óleos, Belo Horizonte, pp 241–282Google Scholar
  15. 15.
    Treichel H, Sbardelotto M, Venturin B, Dall Agnol A, Mulinari J, Golunski SM, Baldoni DB, Bevilacqua CB, Jacques RJS, Vargas GDLP, Mossi AJ (2016) Lipase production from a newly isolated Aspergillus niger by solid state fermentation. Curr Biotechnol 5:1–7Google Scholar
  16. 16.
    Golunski S, Astolfi V, Carniel N, Oliveira D, DI Luccio M, Mazutti MA, Treichel H (2011) Ethanol precipitation and ultrafiltration of inulinases from Kluyveromyces marxianus. Sep Purif Technol 78:261–265CrossRefGoogle Scholar
  17. 17.
    Golunski SM, Silva MF, Torbes C, Rosseto V, Perin RK, Mossi AJ, Rigo D, Dallago R, Di Luccio M, Treichel H (2017) Purification of inulinases by changing the ionic strength of the medium and precipitation with alcohols. An Acad Bras Ciênc 89:57–63CrossRefPubMedGoogle Scholar
  18. 18.
    Cavalcanti EAC, Gutarra MLE, Freire DMG, Castilho LR, Sant’Anna GL (2005) Lipase production by solid-state fermentation in fixed-bed bioreactors. Braz Arch Biol Technol 48:9–84CrossRefGoogle Scholar
  19. 19.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Mulinari J, Venturin B, Sbardelotto M, Dall Agnol A, Scapini T, Camargo AF, Baldissarelli DP, Modkovski TA, Rossetto V, Dalla Rosa C, Reichert FW Jr, Golunski SM, Vieitez I, Vargas GDLP., Mossi AJ, Treichel H (2017) Ultrasound-assisted hydrolysis of waste cooking oil catalyzed by homemade lipases. Ultrason Sonochem 35:313–318CrossRefPubMedGoogle Scholar
  21. 21.
    Freire DM, Teles EM, Bom EP, Sant’Anna GL Jr (1997) Lipase production by Peniillium restrictum in a bench-scale fermenter: effect of carbon and nitrogen nutrition, agitation, and aeration. Appl Biochem Biotech 63:63–65Google Scholar
  22. 22.
    Barbosa JMP, Souza RL, Fricks AT, Zanin GM, Soares CMF, Lima ÁS (2011) Purification of lipase produced by a new source of Bacillus in submerged fermentation using an aqueous two-phase system. J Chromatogr B 879:3853–3858CrossRefGoogle Scholar
  23. 23.
    Porto TS, Silva GM, Porto CS, Cavalcanti MTH, Neto BB, Lima-Filho JL, Converti A, Porto ALF, Pessoa A Jr (2008) Liquid–liquid extraction of proteases from fermented broth by PEG/citrate aqueous two-phase system. Chem Eng Process 47:716–721CrossRefGoogle Scholar
  24. 24.
    Pan IH, Yao HJ, Li YK (2001) Effective extraction and purification of β-xylosidase from Trichodermakoningii fermentation culture by aqueous two-phase partitioning. Enzym Microb Tech 28:196–201CrossRefGoogle Scholar
  25. 25.
    Balaji L, Jayaraman G (2014) Metal ion activated lipase from halo tolerant Bacillus sp. VITL8 displays broader operational range. Int J Biol Macromol 67:380–386CrossRefPubMedGoogle Scholar
  26. 26.
    Park S, Kazlauskas RJ (2003) Biocatalysis in ionic liquids—advantages beyond green technology. Curr Opin Biotechnol 14:432–437CrossRefPubMedGoogle Scholar
  27. 27.
    Amid M, Manap MY (2014) Purification and characterization of a novel amylase enzyme from red pitaya (Hylocereus polyhizus) peel. Food Chem 165:412–418CrossRefPubMedGoogle Scholar
  28. 28.
    Yong SY, Lim BH, Saleh S, Lai-Hock T (2016) Optimisation, purification and characterisation of extracellular lipase from Botryococcus sudeticus (UTEX 2629). J Mol Catal B: Enzym 126:99–105CrossRefGoogle Scholar
  29. 29.
    Saxena RK, Sheoran A, Giri B, Davidson WS (2003) Purification strategies for microbial lipases. J Microbiol Methods 52:1–18CrossRefPubMedGoogle Scholar
  30. 30.
    Al-Zuhair S, Ramachandran KB, Hasan M (2004) Investigation of the specific interfacial area of a palm oil–water system. J Chem Technol Biotechnol 79:706–710CrossRefGoogle Scholar
  31. 31.
    Shamel MM, Ramachandran KB, Hasan M (2005) Operational stability of lipase enzyme: effect of temperature and shear. Dev Chem Eng Min Process 13:599–604CrossRefGoogle Scholar
  32. 32.
    Gonçalves KM, Sutili FK, Leite SGF, De Roma S, Leal ICR, (2012) Palm oil hydrolysis catalyzed by lipases under ultrasound irradiation: the use of experimental design as a tool for variable evaluation. Ultrason Sonochem 19:232–236CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Karina P. Preczeski
    • 1
  • Angela B. Kamanski
    • 1
  • Thamarys Scapini
    • 1
  • Aline F. Camargo
    • 1
  • Tatiani A. Modkoski
    • 1
  • Vanusa Rossetto
    • 1
  • Bruno Venturin
    • 1
  • Jéssica Mulinari
    • 2
  • Simone M. Golunski
    • 1
  • Altemir J. Mossi
    • 1
  • Helen Treichel
    • 1
  1. 1.Universidade Federal da Fronteira Sul-UFFSErechimBrazil
  2. 2.Departamento de Engenharia Química e de AlimentosUniversidade Federal de Santa CatarinaFlorianópolisBrazil

Personalised recommendations