Advertisement

Bioprocess and Biosystems Engineering

, Volume 41, Issue 6, pp 811–817 | Cite as

Enhanced production of exopolysaccharides using industrial grade starch as sole carbon source

  • Xun He
  • Feng He
  • Jiao Hang
  • Hui Li
  • Yali Chen
  • Ping Wei
  • Kequan Chen
  • Yan Li
  • Pingkai OuYang
Research Paper
  • 150 Downloads

Abstract

Industrial grade soluble corn starch was used directly and effectively as the fermentation substrate for microbial exopolysaccharides production. Bacillus subtilis mutant strain NJ308 grew with untreated starch raw material as the sole carbon source. The real-time PCR results demonstrated that up-regulated genes encoding N-acetylglucosaminyltransferase, mannosyltransferase, and N-acetylglucosamine-1-phosphate uridyltransferase were the key elements of B. subtilis mutant strain NJ308 for exopolysaccharides production from industrial grade starch. Subsequently, the culture conditions for B. subtilis NJ308 were optimized using Plackett–Burman design and central composite design methods, and the related key genes in the synthesis pathway of exopolysaccharides from the starch raw material were analyzed by real-time PCR. The maximum exopolysaccharides titration (3.41 g/L) was obtained when the initial starch concentration was 45 g/L. This corresponds to volumetric productivity values of 71.04 mg/L h.

Keywords

Microbial extracellular exopolysaccharides EPS Starch Bacillus subtilis 

Abbreviations

EPS

Extracellular polysaccharide(s)

ROS

Reactive oxygen species

RT-PCR

Real-time PCR

PBD

Plackett–Burman design

CCD

Central composite design

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program (Grant No. 2016YFA0204300), and the National Natural Science Foundation of China (Grant No. 21706126).

References

  1. 1.
    Shih IL (2010) Microbial exo-polysaccharides for biomedical applications. Mini Rev Med Chem 10:1345–1355CrossRefGoogle Scholar
  2. 2.
    Zhang M, Chen H, Huang J, Li Z, Zhu C, Zhang S (2005) Effect of lycium barbarum polysaccharide on human hepatoma QGY7703 cells: inhibition of proliferation and induction of apoptosis. Life Sci 76:2115–2124CrossRefGoogle Scholar
  3. 3.
    Luo DH, Fang BS (2008) Structural identification of ginseng polysaccharides and testing of their antioxidant activities. Carbohyd Polym 72:376–381CrossRefGoogle Scholar
  4. 4.
    Takayoshi K, Yasuyuki T (2002) Structural analysis of an extracellular polysaccharide bioflocculant of Klebsiella pneumonia. Biosci Biotechnol Biochem 66:1524–1530CrossRefGoogle Scholar
  5. 5.
    Ishurda O, Kennedy JFT (2005) The anti-cancer activity of polysaccharide prepared from Libyan dates (Phoenix dactylifera L.). Carbohyd Polym 59:531–535CrossRefGoogle Scholar
  6. 6.
    Badwaik HR, Giri TK, Nakhate KT, Kashyap P, Tripathi DK (2013) Xanthan gum and its derivatives as a potential bio-polymeric carrier for drug delivery system. Curr Drug Deliv 10:587–600CrossRefGoogle Scholar
  7. 7.
    Cansell M, Moussaoui N, Lefrancois C (2001) Stability of marine lipid based-liposomes under acid conditions. Influence of xanthan gum. J Liposome Res 11:229–242CrossRefGoogle Scholar
  8. 8.
    Eastwood MA (1993) Xanthan gum and colonic function in man. Br J Nutr 70:809–810CrossRefGoogle Scholar
  9. 9.
    Daly J, Tomlin J, Read NW (1993) The effect of feeding xanthan gum on colonic function in man: correlation with in vitro determinants of bacterial breakdown. Br J Nutr 69:897–902CrossRefGoogle Scholar
  10. 10.
    Mcintosh M, Stone BA, Stanisich VA (2005) Curdlan and other bacterial (1 → 3)-β-d-glucans. Appl Microbiol Biotechnol 68:163–173CrossRefGoogle Scholar
  11. 11.
    Zhang HT, Zhan XB, Zheng ZY, Wu JR, English N, Yu XB, Lin CC (2012) Improved curdlan fermentation process based on optimization of dissolved oxygen combined with pH control and metabolic characterization of Agrobacterium sp. ATCC 31749. Appl Microbiol Biotechnol 93:367–379CrossRefGoogle Scholar
  12. 12.
    Zhan XB, Lin CC, Zhang HT (2012) Recent advances in curdlan biosynthesis, biotechnological production, and applications. Appl Microbiol Biotechnol 93:525–531CrossRefGoogle Scholar
  13. 13.
    Filomena F, Cristiana AVT, Maria AMR (2017) Engineering aspects of microbial exopolysaccharide production. Bioresour Technol 245:1674–1683CrossRefGoogle Scholar
  14. 14.
    Freitas F, Alves VD, Torres CAV, Cruz M, Sousa I, Melo MJ, Ramos AM, Reis MAM (2011) Fucose-containing exopolysaccharide produced by the newly isolated Enterobacter strain A47 DSM 23139. Carbohydr Polym 83:159–165CrossRefGoogle Scholar
  15. 15.
    Freitas F, Alves VD, Reis MAM (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29:388–398CrossRefGoogle Scholar
  16. 16.
    Psomas SK, Liakopoulou-Kyriakides M, Kyriakidis DA (2007) Optimization study of xanthan gum production using response surface methodology. Biochem Eng J 35:273–280CrossRefGoogle Scholar
  17. 17.
    Jia Y, Zhu J, Chen X, Tang D, Su D, Yao W, Gao X (2013) Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights. Bioresour Technol 132:427–431CrossRefGoogle Scholar
  18. 18.
    Adebayo-Tayo BC, Edwin EU (2011) Influence of different nutrient sources on exopolysaccharide production and biomass yield by submerged culture of Trametes versicolor and Coprinus sp. AU J Technol 15(2):63–69Google Scholar
  19. 19.
    Bhatia SK, Kumar N, Bhatia RK (2015) Stepwise bioprocess for exopolysaccharide production using potato starch as carbon source. 3 Biotech 5:735–739CrossRefGoogle Scholar
  20. 20.
    Yeesang C, Chanthachum S, Cheirsilp B (2008) Sago starch as a low-cost carbon source for exopolysaccharide production by Lactobacillus kefiranofaciens. World J Microbiol Biotechnol 24:1195–1201CrossRefGoogle Scholar
  21. 21.
    Wan HG, Yuan JF, Shan XY, Zhu MX, Zong SY, Shi N (2009) Bacillus extracellular polysaccharide structure preliminary analysis. Food Ferment Ind 35(1):35–37Google Scholar
  22. 22.
    Kennedy JF, Bunko KED, Leser ME (2007) Food colloids: self-assembly and material science. RSC Publishing, CambridgeGoogle Scholar
  23. 23.
    DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  24. 24.
    Nampoothiri KM, Singhania RR, Pandey ACS (2003) Fermentative production of gellan using Sphingomonas paucimobilis. Process Biochem 38:1513–1519CrossRefGoogle Scholar
  25. 25.
    Yong XY, Raza W, Yu GH, Ran W, Shen QR, Yang XM (2011) Optimization of the production of poly-c-glutamic acid by Bacillus amyloliquefaciens C1 in solid-state fermentation using dairy manure compost and monosodium glutamate production residues as basic substrates. Bioresour Technol 102:7548–7554CrossRefGoogle Scholar
  26. 26.
    Schmid J, Sieber V, Rehm B (2015) Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 26:496Google Scholar
  27. 27.
    Fábio CS, Danilo DF, Hilario CM, Flávia MLP, Patrizia P, Attilio C (2006) Use of response surface methodology for optimization of xylitol production by the new yeast strain Debaryomyces hansenii UFV-170. J Food Eng 76:376–386CrossRefGoogle Scholar
  28. 28.
    Gangadharan R, Anandan V, Zhang G (2008) Optimizing the functionalization process for nanopillar enhanced electrodes with GOx/PPY for glucose detection. Nanotechnology 19:1–7CrossRefGoogle Scholar
  29. 29.
    Zhao X, Han Y, Tan XQ, Wang J, Zhou ZJ (2014) Optimization of antifungal lipopeptide production from Bacillus sp. BH072 by response surface methodology. J Microbiol 52:324–332CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xun He
    • 1
  • Feng He
    • 1
  • Jiao Hang
    • 1
  • Hui Li
    • 1
  • Yali Chen
    • 1
  • Ping Wei
    • 1
  • Kequan Chen
    • 1
  • Yan Li
    • 1
  • Pingkai OuYang
    • 1
  1. 1.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and PharmaceuticalNanjing Tech UniversityNanjingPeople’s Republic of China

Personalised recommendations