Bioprocess and Biosystems Engineering

, Volume 41, Issue 5, pp 729–738 | Cite as

Genome shuffling and ribosome engineering of Streptomyces virginiae for improved virginiamycin production

  • Qian-Qian Tong
  • Yue-Hui Zhou
  • Xiang-Song Chen
  • Jin-Yong Wu
  • Ping Wei
  • Li-Xia Yuan
  • Jian-Ming Yao
Research Paper


The production of virginiamycin (VGM) from Streptomyces virginiae was improved by genome shuffling and ribosome engineering companied with a high-throughput screening method integrating deep-well cultivation and the cylinder–plate detecting. First, a novel high-throughput method was developed to rapidly screen large numbers of VGM-producing mutants. Then, the starting population of genome shuffling was obtained through ultraviolet (UV) and microwave mutagenesis, and four mutants with higher productivity of VGM were selected for genome shuffling. Next, the parent protoplasts were inactivated by UV and heat when a fusant probability was about 98%. Streptomycin resistance was used as an evolutionary pressure to extend positive effects on VGM synthesis. Finally, after five rounds of genome shuffling, a genetically stable strain G5-103 was obtained and characterized to be able to yield 251 mg/L VGM, which was 3.1- and 11.6-fold higher than that of the mutant strain UV 1150 and the wild-type strain, respectively.


Virginiamycin Genome shuffling Ribosome engineering Streptomyces virginiae High-throughput Streptomycin 



We would like to thank the youth project of National Natural Science Foundation of China (21506235), the general project of Natural Science Foundation of Anhui province (1508085MB38), the foundation of Institute of Plasma Physics Chinese Academy of Science (Grant no. DSJJ-16-YY02) and the foundation of Institute of Plasma Physics Chinese Academy of Science (Grant no. DSJJ-15-YY02).


  1. 1.
    Mukhtar TA, Wright GD (2005) Streptogramins, oxazolidinones, and other inhibitors of bacterial protein synthesis. Chem Rev 105(2):529–542. CrossRefGoogle Scholar
  2. 2.
    Pulsawat N, Kitani S, Nihira T (2007) Characterization of biosynthetic gene cluster for the production of virginiamycin M, a streptogramin type A antibiotic, in Streptomyces virginiae. Gene 393(1):31–42CrossRefGoogle Scholar
  3. 3.
    Cocito C (1979) Antibiotics of the virginiamycin family, inhibitors which contain synergistic components. Microbiol Rev 43(2):145–198Google Scholar
  4. 4.
    Dzhavakhiya V, Savushkin V, Ovchinnikov A, Glagolev V, Savelyeva V, Popova E, Novak N, Glagoleva E (2016) Scaling up a virginiamycin production by a high-yield Streptomyces virginiae VKM Ac-2738D strain using adsorbing resin addition and fed-batch fermentation under controlled conditions. 3 Biotech 6(2):240. CrossRefGoogle Scholar
  5. 5.
    Yang YK, Shimizu H, Shioya S, Suga K, Nihira T, Yamada Y (1995) Optimum autoregulator addition strategy for maximum virginiamycin production in batch culture of Streptomyces virginiae. Biotechnol Bioeng 46(5):437–442CrossRefGoogle Scholar
  6. 6.
    Shioya S, Morikawa M, Kajihara Y, Shimizu H (1999) Optimization of agitation and aeration conditions for maximum virginiamycin production. Appl Microbiol Biotechnol 51(2):164–169CrossRefGoogle Scholar
  7. 7.
    Zvenigorodskii VI, Tyaglov BV, Voeikova TA (2001) Isolation of components of the peptide antibiotic virginiamycin and breeding of their producer, Streptomyces virginiae. Appl Biochem Microbiol 37(3):260–266CrossRefGoogle Scholar
  8. 8.
    Gong J, Zheng H, Wu Z, Chen T, Zhao X (2009) Genome shuffling: progress and applications for phenotype improvement. Biotechnol Adv 27(6):996–1005CrossRefGoogle Scholar
  9. 9.
    Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WPC, Cardayré SBD (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415(6872):644–646CrossRefGoogle Scholar
  10. 10.
    Patnaik R, Louie S, Gavrilovic V, Perry K, Stemmer WPC, Ryan CM, Cardayré SD (2002) Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 20(7):707–712CrossRefGoogle Scholar
  11. 11.
    Wang L, Chen X, Wu G, Zeng X, Ren X, Li S, Tang L, Mao Z (2016) Genome shuffling and gentamicin-resistance to improve ε-poly-l-lysine productivity of Streptomyces albulus W-156. Appl Biochem Biotechnol 180(3):1601–1617CrossRefGoogle Scholar
  12. 12.
    Zheng P, Zhang K, Yan Q, Xu Y, Sun Z (2013) Enhanced succinic acid production by Actinobacillus succinogenes after genome shuffling. J Ind Microbiol Biotechnol 40(8):831–840CrossRefGoogle Scholar
  13. 13.
    Lv XA, Jin YY, Li YD, Zhang H, Liang XL (2013) Genome shuffling of Streptomyces viridochromogenes for improved production of avilamycin. Appl Microbiol Biotechnol 97(2):641–648CrossRefGoogle Scholar
  14. 14.
    Shima J, Hesketh A, Okamoto S, Kawamoto S, Ochi K (1996) Induction of actinorhodin production by rpsL mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). J Bacteriol 178(24):7276–7284CrossRefGoogle Scholar
  15. 15.
    Ochi K, Okamoto S, Tozawa Y, Inaoka T, Hosaka T, Xu J, Kurosawa K (2004) Ribosome engineering and secondary metabolite production. Adv Appl Microbiol 56(1):155–184CrossRefGoogle Scholar
  16. 16.
    Ochi K (2007) From microbial differentiation to ribosome engineering. Biosci Biotechnol Biochem 71(6):1373–1386CrossRefGoogle Scholar
  17. 17.
    Wang Q, Zhang D, Li Y, Zhang F, Wang C, Liang X (2014) Genome shuffling and ribosome engineering of Streptomyces actuosus for high-yield nosiheptide production. Appl Biochem Biotechnol 173(6):1553–1563CrossRefGoogle Scholar
  18. 18.
    Hosoya Y, Okamoto S, Muramatsu H, Ochi K (1998) Acquisition of certain streptomycin-resistant (str) mutations enhances antibiotic production in bacteria. Antimicrob Agents Chemother 42(8):2041–2047Google Scholar
  19. 19.
    Zhang J, Wang X, Diao J, He H, Zhang Y, Xiang W (2013) Streptomycin resistance-aided genome shuffling to improve doramectin productivity of Streptomyces avermitilis NEAU1069. J Ind Microbiol Biotechnol 40(8):877–889CrossRefGoogle Scholar
  20. 20.
    Gossele F, Blain P, Marneffe T, Biot A (1991) High-performance liquid chromatographic determination of virginiamycin in Stafac, premixes and animal feeds. Analyst 116(12):1373–1380CrossRefGoogle Scholar
  21. 21.
    Hajee CA, van Rhijn HJ, Lasaroms JJ, Keukens HJ, De JJ (2001) Development and validation of a method for the determination of sub-additive levels of virginiamycin in compound animal feeds by liquid chromatography. Analyst 126(8):1332–1338CrossRefGoogle Scholar
  22. 22.
    Yang YK, Morikawa M, Shimizu H, Shioya S, Suga K, Nihira T, Yamada Y (1996) Maximum virginiamycin production by optimization of cultivation conditions in batch culture with autoregulator addition. Biotechnol Bioeng 49(4):437–444CrossRefGoogle Scholar
  23. 23.
    Wang HK, Zhang J, Wang XJ, Wei Q, Dai YJ (2012) Genome shuffling improves production of the low-temperature alkalophilic lipase by Acinetobacter johnsonii. Biotechnol Lett 34(1):145–151CrossRefGoogle Scholar
  24. 24.
    Du W, Huang D, Xia M, Wen J, Huang M (2014) Improved FK506 production by the precursors and product-tolerant mutant of Streptomyces tsukubaensis based on genome shuffling and dynamic fed-batch strategies. J Ind Microbiol Biot 41(7):1131–1143CrossRefGoogle Scholar
  25. 25.
    Li W, Chen G, Gu L, Zeng W, Liang Z (2014) Genome shuffling of Aspergillus niger for improving transglycosylation activity. Appl Biochem Biotechnol 172(1):50–61CrossRefGoogle Scholar
  26. 26.
    Zhou Y-P, Ren X-D, Wang L, Chen X-S, Mao Z-G, Tang L (2015) Enhancement of ε-poly-lysine production in ε-poly-lysine-tolerant Streptomyces sp. by genome shuffling. Bioproc Biosyst Eng 38(9):1705–1713CrossRefGoogle Scholar
  27. 27.
    Xu ZN, Shen WH, Chen XY, Lin JP, Cen PL (2005) A high-throughput method for screening of rapamycin-producing strains of Streptomyces hygroscopicus by cultivation in 96-well microtiter plates. Biotechnol Lett 27(15):1135–1140CrossRefGoogle Scholar
  28. 28.
    Hida H, Yamada T, Yamada Y (2007) Genome shuffling of Streptomyces sp. U121 for improved production of hydroxycitric acid. Appl Microbiol Biot 73(6):1387–1393CrossRefGoogle Scholar
  29. 29.
    Zhao Y, Jiang C, Yu H, Fang F, Yang J (2014) Genome shuffling of Aspergillus glaucus HGZ-2 for enhanced cellulase production. Appl Biochem Biotechnol 174(4):1246–1259CrossRefGoogle Scholar
  30. 30.
    Yu L, Pei X, Lei T, Wang Y, Feng Y (2008) Genome shuffling enhanced l-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus. J Biotechnol 134(2):154–159CrossRefGoogle Scholar
  31. 31.
    Zhang M, Xiao Y, Zhu R, Zhang Q, Wang SL (2012) Enhanced thermotolerance and ethanol tolerance in Saccharomyces cerevisiae mutated by high-energy pulse electron beam and protoplast fusion. Bioproc Biosyst Eng 35(9):1455–1465CrossRefGoogle Scholar
  32. 32.
    Luo JM, Li JS, Liu D, Liu F, Wang YT, Song XR, Wang M (2012) Genome Shuffling of Streptomyces gilvosporeus for Improving Natamycin Production. J Agric Food Chem 60(23):6026–6036CrossRefGoogle Scholar
  33. 33.
    Parekh S, Vinci VA, Strobel RJ (2000) Improvement of microbial strains and fermentation processes. Appl Microbiol Biot 54(3):287–301CrossRefGoogle Scholar
  34. 34.
    Beltrametti F, Rossi R, Selva E, Marinelli F (2006) Antibiotic production improvement in the rare actinomycete Planobispora rosea by selection of mutants resistant to the aminoglycosides streptomycin and gentamycin and to rifamycin. J Ind Microbiol Biot 33(4):283–288CrossRefGoogle Scholar
  35. 35.
    Olano C, Lombó F, Méndez C, Salas JA (2008) Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab Eng 10(5):281–292CrossRefGoogle Scholar
  36. 36.
    Tanaka Y, Komatsu M, Okamoto S, Tokuyama S, Kaji A, Ikeda H, Ochi K (2009) Antibiotic overproduction by rpsL and rsmG mutants of various actinomycetes. Appl Environ Microb 75(14):4919–4922CrossRefGoogle Scholar
  37. 37.
    Baltz RH (2011) Strain improvement in actinomycetes in the postgenomic era. J Ind Microbiol Biot 38(6):657–666CrossRefGoogle Scholar
  38. 38.
    Kozo O, Takeshi H (2013) New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl Microbiol Biot 97(1):87–98CrossRefGoogle Scholar
  39. 39.
    Xu B, Jin Z, Jin Q, Li N, Cen P (2009) Improvement of pristinamycin production by genome shuffling and medium optimization for Streptomyces pristinaespiralis. Biotechnol Bioprocess Eng 14(2):175–179CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Qian-Qian Tong
    • 1
    • 2
  • Yue-Hui Zhou
    • 1
    • 2
  • Xiang-Song Chen
    • 1
    • 2
  • Jin-Yong Wu
    • 1
  • Ping Wei
    • 3
  • Li-Xia Yuan
    • 1
  • Jian-Ming Yao
    • 1
  1. 1.Institute of Plasma Physics, Hefei institutes of Physical ScienceChinese Academy of SciencesHefeiChina
  2. 2.University of Science and Technology of ChinaHefeiChina
  3. 3.School of Naval Architecture and Ocean EngineeringJiangsu University of Science and TechnologyZhenjiangChina

Personalised recommendations