Skip to main content

Advertisement

Log in

Recombinase polymerase amplification combined with lateral flow dipstick for equipment-free detection of Salmonella in shellfish

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Salmonella is a major pathogen that causes acute foodborne outbreaks worldwide. Seafood, particularly shellfish, is a proven source of Salmonella spp. infection because many people prefer to eat it raw or lightly cooked. However, traditional identification methods are too time-consuming and complex to detect contamination of bacteria in the food chain in a timely manner, and few studies have aimed to identify Salmonella in shellfish early in the supply chain. We herein developed a method for rapid detection of Salmonella in shellfish based on the method of recombinase polymerase amplification (RPA) combined with lateral flow dipstick (LFD), which targets the invasion gene A (invA). The RPA-LFD was able to function at 30–45 °C, and at the temperature of 40 °C, it only took 8 min of amplification to reach the test threshold of amplicons. The established method had both a good specificity and a sensitivity of 100 fg DNA per reaction (20 µL). Regarding practical performance, RPA-LFD performed better than real-time PCR. Another advantage of RPA-LFD is that it was capable of being performed without expensive equipments. Thus, RPA-LFD has potential for further development as a detection kit for Salmonella in shellfish and other foods under field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Reprinted from Harmful Algae, Vol 62, Hailong Huang, Peng Zhu, Chengxu Zhou, Shan He, Xiaojun Yan, The development of loop-mediated isothermal amplification combined with lateral flow dipstick for detection of Karlodinium veneficum, Pages 20–29, Copyright (2017), with permission from Elsevier

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lund BM (2015) Microbiological food safety for vulnerable people. Int J Environ Res Public Health 12:10117–10132

    Article  CAS  Google Scholar 

  2. Botelho-Nevers E, Gautret P (2013) Outbreaks associated to large open air festivals, including music festivals, 1980 to 2012. Euro Surveill 18:20426

    Article  CAS  Google Scholar 

  3. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM (2011) Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 17:7–15

    Article  Google Scholar 

  4. EFSA ECDC. (2013) The European Union Summary Report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2011. EFSA J 11:3129

    Article  Google Scholar 

  5. Ranieri ML, Shi C, Switt AIM, Bakker HCD, Wiedmann M (2013) Comparison of typing methods with a new procedure based on sequence characterization for Salmonella serovar prediction. J Clin Microbiol 51:1786–1797

    Article  CAS  Google Scholar 

  6. Foley SL, Lynne AM (2008) Food animal-associated Salmonella challenges: pathogenicity and antimicrobial resistance. J Anim Sci 86:173–187

    Article  Google Scholar 

  7. Mąka Ł, Popowska M (2016) Antimicrobial resistance of Salmonella spp. isolated from food. Rocz Panstw Zakl Hig 67:343–358

    Google Scholar 

  8. Eady M, Park B (2016) Rapid identification of Salmonella serotypes through hyperspectral microscopy with different lighting sources. J Spectr Imaging 5:a4

    Article  Google Scholar 

  9. He Y, Lin L, Alam MJ, Shinoda S, Miyoshi S, Lei S (2010) Prevalence and antimicrobial resistance of Salmonella in retail foods in northern China. Int J Food Microbiol 143:230–234

    Article  Google Scholar 

  10. EFSA ECDC. (2015) The European Union Summary Report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2014. EFSA J 13:4329

    Google Scholar 

  11. OzFoodNet Working Group (2012) Monitoring the incidence and causes of diseases potentially transmitted by food in Australia: annual report of the OzFoodNet network, 2010. Commun Dis Intell Q Rep 36:E213–E241

    Google Scholar 

  12. Wu H, Xia X, Cui Y, Hu Y, Xi M, Wang X, Shi X, Wang D, Meng J, Yang B (2013) Prevalence of extended-spectrum beta-lactamase-producing Salmonella on; retail chicken in six provinces and two national cities in the People’s Republic of China. J Food Prot 76:2040–2044

    Article  CAS  Google Scholar 

  13. Xiong D, Song L, Geng S, Tao J, An S, Pan Z, Jiao X (2016) One-step PCR detection of Salmonella Pullorum/Gallinarum using a novel target: the flagellar biosynthesis gene flhB. Front Microbiol 7:1863

    Google Scholar 

  14. O’Regan E, Mccabe E, Burgess C, Mcguinness S, Barry T, Duffy G, Whyte P, Fanning S (2008) Development of a real-time multiplex PCR assay for the detection of multiple Salmonella serotypes in chicken samples. BMC Microbiol 8:156

    Article  Google Scholar 

  15. Wang L, Shi L, Alam MJ, Geng Y, Li L (2008) Specific and rapid detection of foodborne Salmonella by loop-mediated isothermal amplification method. Food Res Int 41:69–74

    Article  Google Scholar 

  16. Wang R, Ni Y, Xu Y, Jiang Y, Dong C, Na C (2015) Immuno-capture and in situ detection of Salmonella typhimurium on a novel microfluidic chip. Anal Chim Acta 853:710–717

    Article  CAS  Google Scholar 

  17. Pablos C, Marugán J, Cristóbal S, Grieken Rv (2017) Implications of electrical impedance-based microbiological technology in pork meat processing industry for the rapid detection and quantification of Salmonella Spp. J Food Sci Eng 7:1–16

    Google Scholar 

  18. Spector MP (1998) The starvation-stress response (SSR) of Salmonella. Adv Microb Physiol 40:233–279

    Article  CAS  Google Scholar 

  19. Kersting S, Rausch V, Bier FF, Nickisch-Rosenegk Mv (2014) Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens. Mikrochim Acta 181:1715–1723

    Article  CAS  Google Scholar 

  20. Rahn K, De Grandis SA, Clarke RC, Mcewen SA, Galán JE, Ginocchio C, Curtiss RI, Gyles CL (1992) Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol Cell Probes 6:271–279

    Article  CAS  Google Scholar 

  21. González-Escalona N, Brown EW, Zhang G (2012) Development and evaluation of a multiplex real-time PCR (qPCR) assay targeting ttrRSBCA locus and invA gene for accurate detection of Salmonella spp. in fresh produce and eggs. Food Res Int 48:202–208

    Article  Google Scholar 

  22. Malorny B, Hoorfar J, Bunge C, Helmuth R (2003) Multicenter validation of the analytical accuracy of Salmonella PCR: towards an international standard. Appl Environ Microbiol 69:290–296

    Article  CAS  Google Scholar 

  23. Jia Y, Mak PI, Massey C, Martins RP, Wangh LJ (2013) Construction of a microfluidic chip, using dried-down reagents, for LATE-PCR amplification and detection of single-stranded DNA. Lab Chip 13:4635–4641

    Article  CAS  Google Scholar 

  24. Gangwar M, Waters AM, Bej GA, Bej AK, Mojib N (2013) Detection of Salmonella in shellfish using SYBR Green I-based real-time multiplexed PCR assay targeting invA and spvB. Food Anal Methods 6:922–932

    Article  Google Scholar 

  25. Lazcka O, Del Campo FJ, Muñoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22:1205–1217

    Article  CAS  Google Scholar 

  26. Piepenburg O, Williams CH, Stemple DL, Armes NA (2006) DNA detection using recombination proteins. PLoS Biol 4:1115–1121

    Article  CAS  Google Scholar 

  27. Jia L, Joanne M (2015) Advances in isothermal amplification: novel strategies inspired by biological processes. Biosens Bioelectron 64:196–211

    Article  Google Scholar 

  28. del Río JS, Adly NY, Acero-Sánchez JL, Henry OYF, O’Sullivan CK (2014) Electrochemical detection of Francisella tularensis genomic DNA using solid-phase recombinase polymerase amplification. Biosens Bioelectron 54:674–678

    Article  Google Scholar 

  29. Ahmed A, Linden van der H, Hartskeerl RA (2014) Development of a recombinase polymerase amplification assay for the detection of pathogenic Leptospira. Int J Environ Res Public Health 11:4953–4964

    Article  Google Scholar 

  30. Murinda SE, Ibekwe AM, Zulkaffly S, Cruz A, Park S, Razak N, Paudzai FM, Ab Samad L, Baquir K, Muthaiyah K, Santiago B, Rusli A, S B (2014) Real-time isothermal detection of Shiga toxin-producing Escherichia coli using recombinase polymerase amplification. Foodborne Pathog Dis 11:529–536

    Article  CAS  Google Scholar 

  31. Gao W, Huang H, Zhang Y, Zhu P, Yan X, Fan J, Chen X (2017) Recombinase polymerase amplification-based assay for rapid detection of listeria monocytogenes in food samples. Food Anal Methods 10:1972–1981

    Article  Google Scholar 

  32. Crannell ZA, Castellanosgonzales A, Nair G, Mejia R, White AC, Richardskortum R (2015) A multiplexed recombinase polymerase amplification assay to detect intestinal protozoa. Anal Chem 88:1610–1616

    Article  Google Scholar 

  33. Castellanos-Gonzalez A, Saldarriaga OA, Tartaglino L, Gacek R, Temple E, Sparks H, Melby PC, Travi BL (2015) A novel molecular test to diagnose canine visceral leishmaniasis at the point of care. Am J Trop Med Hyg 93:970–975

    Article  CAS  Google Scholar 

  34. Yang Y, Qin X, Wang G, Zhang Y, Shang Y, Zhang Z (2015) Development of a fluorescent probe-based recombinase polymerase amplification assay for rapid detection of Orf virus. Virol J 12:206

    Article  Google Scholar 

  35. Faye O, Faye O, Soropogui B, Patel P, El Wahed AA, Loucoubar C, Fall G, Kiory D, Magassouba N, Keita S, Kondé MK, Diallo AA, Koivogui L, Karlberg H, Mirazimi A, Nentwich O, Piepenburg O, Niedrig M, Weidmann M, Sall AA (2015) Development and deployment of a rapid recombinase polymerase amplification Ebola virus detection assay in Guinea in 2015. Euro Surveill 20:S.1–9

  36. Liu W, Liu HX, Zhang L, Hou XX, Wan KL, Hao Q (2016) A novel isothermal assay of Borrelia burgdorferi by recombinase polymerase amplification with lateral flow detection. Int J Mol Sci 17:1250

    Article  Google Scholar 

  37. Prescott MA, Reed AN, Jin L, Pastey MK (2016) Rapid detection of cyprinid herpesvirus 3 in latently infected Koi by recombinase polymerase amplification. J Aquat Anim Health 28:173–180

    Article  CAS  Google Scholar 

  38. Sun K, Xing W, Yu X, Fu W, Wang Y, Zou M, Luo Z, Xu D (2016) Recombinase polymerase amplification combined with a lateral flow dipstick for rapid and visual detection of Schistosoma japonicum. Parasites Vectors 9:476

    Article  Google Scholar 

  39. Lillis L, Siverson J, Lee A, Cantera J, Parker M, Piepenburg O, Lehman DA, Boyle DS (2016) Factors influencing recombinase polymerase amplification (RPA) assay outcomes at point of care. Mol Cell Probes 30:74–78

    Article  CAS  Google Scholar 

  40. Boyle DS, McNerney R, Low HT, Leader BT, Pe´rez-Osorio AC, Meyer JC, O’Sullivan DM, Brooks DG, Piepenburg O, Forrest MS (2014) Rapid detection of mycobacterium tuberculosis by recombinase polymerase amplification. PLoS One 9:e103091

    Article  Google Scholar 

  41. Huang HL, Zhu P, Zhou CX, He S, Yan XJ (2017) The development of loop-mediated isothermal amplification combined with lateral flow dipstick for detection of Karlodinium veneficum. Harmful Algae 62:20–29

    Article  CAS  Google Scholar 

  42. Kersting S, Rausch V, Bier FF, Nickisch-Rosenegk Mv (2014) Rapid detection of plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Malar J 13:99

    Article  Google Scholar 

  43. Han F, Ge B (2008) Evaluation of a loop-mediated isothermal amplification assay for detecting Vibrio vulnificus in raw oysters. Foodborne Pathog Dis 5:311

    Article  CAS  Google Scholar 

  44. Lee N, Kwon KY, Oh SK, Chang HJ, Chun HS, Choi SW (2014) A multiplex PCR assay for simultaneous detection of Escherichia coli O157:H7, Bacillus cereus, Vibrio parahaemolyticus, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus in Korean ready-to-eat food. Foodborne Pathog Dis 11:574–580

    Article  CAS  Google Scholar 

  45. Guo H (2010) Study on rapid detection method by multiple PCR of four species animal food borne pathogenic bacteria. Master’s thesis, Heilongjiang Bayi Agricultural University, Heilongjiang Province

  46. Zhang W, Xie Z, Zuo H, Ding X, Pei X (2010) Detection of food-borne pathogens with polymerase chain reaction and introduction of food safety supervision system in China. Qual Assur Saf Crops Foods 2:13–21

    Article  CAS  Google Scholar 

  47. Lillis L, Lehman D, Singhal MC, Cantera J, Singleton J, Labarre P, Toyama A, Piepenburg O, Parker M, Wood R, Overbaugh J, Boyle DS (2014) Non-instrumented incubation of a recombinase polymerase amplification assay for the rapid and sensitive detection of proviral HIV-1 DNA. PLoS One 9:e108189

    Article  Google Scholar 

  48. Ahn YC, Cho MH, Yoon IK, Jung DH, Lee EY, Kim JH, Jang WC, Ahn YC, Cho MH, Yoon IK (2010) Detection of Salmonella using the loop mediated isothermal amplification and real-time PCR. J Korean Chem Soc 54:215–221

    Article  CAS  Google Scholar 

  49. Zhuang L, Gong J, Li Q, Zhu C, Yu Y, Dou X, Liu X, Xu B, Wang C (2014) Detection of Salmonella spp. by a loop-mediated isothermal amplification (LAMP) method targeting bcfD gene. Lett Appl Microbiol 59:658–664

    Article  CAS  Google Scholar 

  50. Hiroshi K, Jun K, Kumiko F, Kenichi H, Masayoshi I, Naomi F, Mika N, Shunichi O, Toshiya S, Kazushige T (2009) Simultaneous enrichment of Salmonella spp, Escherichia coli O157:H7, Vibrio parahaemolyticus, Staphylococcus aureus, Bacillus cereus, and Listeria monocytogenes by single broth and screening of the pathogens by multiplex real-time PCR. Food Sci Technol Res 15:427–438

    Google Scholar 

  51. Kim TH, Park J, Kim CJ, Cho YK (2014) Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens. Anal Chem 86:3841–3848

    Article  CAS  Google Scholar 

  52. Ji YK, Lee JL (2016) Rapid detection of Salmonella enterica serovar enteritidis from eggs and chicken meat by real-time recombinase polymerase amplification in comparison with the two-step real-time PCR. J Food Saf 32:611–615

    Google Scholar 

  53. Choi G, Jung JH, Park BH, Oh SJ, Seo JH, Choi JS, Kim H, Seo TS (2016) A centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria. Lab Chip 16:2309–2316

    Article  CAS  Google Scholar 

  54. Katrin K, Jekaterina F, Oana T, Julia S, Taavi L, Hiljar S, Imre M, Made L, Indrek T, Ülo L (2014) Sensitive and rapid detection of Chlamydia trachomatis by recombinase polymerase amplification directly from urine samples. J Mol Diagn JMD 16:127–135

    Article  Google Scholar 

  55. Valiadi M, Kalsi S, Jones IGF, Turner C, Sutton JM, Morgan H (2016) Simple and rapid sample preparation system for the molecular detection of antibiotic resistant pathogens in human urine. Biomed Microdevices 18:18

    Article  Google Scholar 

  56. Rosser A, Rollinson D, Forrest M, Webster BL (2015) Isothermal recombinase polymerase amplification (RPA) of Schistosoma haematobium DNA and oligochromatographic lateral flow detection. Parasites Vectors 8:446

    Article  CAS  Google Scholar 

  57. Liljander A, Yu M, O’Brien E, Heller M, Nepper JF, Weibel DB, Gluecks I, Younan M, Frey J, Falquet L (2015) Field-applicable recombinase polymerase amplification assay for rapid detection of Mycoplasma capricolum subsp. capripneumoniae. J Clin Microbiol 53:2810–2815

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the Ningbo Academy of Inspection and Quarantine for providing the Salmonella strain, DNAs of other serotypes of Salmonella and non-Salmonella organisms for this study, and their allowing us to finish assays of cultivating strains in the laboratory there. Authors also appreciated the assistance and guidance of the staff there. We thank LetPub (http://www.letpub.com) for their linguistic assistance during the preparation of this manuscript.

Funding

This study was funded by Ningbo Innovation Team (2015C110018), Ningbo Science and Technology Research Projects (2017C110003), Zhejiang Provincial Public Welfare Technology Program of China (2017C33133), K.C. Wang Magna Fund in Ningbo University (SS), Scientific Research Foundation of Graduate School of Ningbo University (G16091), the Earmarked Fund for Modern Agro-industry Technology Research System, China (CARS-49) and Zhejiang Xinmiao Talents Program (2015R405013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Huang, H., Zhu, P. et al. Recombinase polymerase amplification combined with lateral flow dipstick for equipment-free detection of Salmonella in shellfish. Bioprocess Biosyst Eng 41, 603–611 (2018). https://doi.org/10.1007/s00449-018-1895-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-1895-2

Keywords

Navigation