Bioprocess and Biosystems Engineering

, Volume 41, Issue 4, pp 573–583 | Cite as

Optimization of biodiesel synthesis by esterification using a fermented solid produced by Rhizopus microsporus on sugarcane bagasse

  • Vanderleia Botton
  • Leandro Piovan
  • Henry França Meier
  • David Alexander Mitchell
  • Jesús Cordova
  • Nadia Krieger
Research Paper


A fermented solid containing lipases was produced by solid-state fermentation of Rhizopus microsporus on sugarcane bagasse enriched with urea, soybean oil, and a mineral solution. The dry fermented solid produced using R. microsporus (RMFS) was used to catalyze the synthesis of alkyl-esters by esterification in a solvent-free system containing ethanol and oleic acid (as a model system) or a mixture of fatty acids obtained from the physical hydrolysis of soybean soapstock acid oil (FA-SSAO) in subcritical water. The conversions were 93.5 and 84.1%, for oleic acid and FA-SSAO, respectively, at 48 h and 40 °C, at a molar ratio (MR) of ethanol to fatty acid of 5:1. A further increase in the MR to 10:1 improved the production of ethylic-esters, giving conversions at 48 h of 98 and 86% for oleic acid and FA-SSAO, respectively. The results obtained in this work foster further studies on scaling-up of an environmentally friendly process to produce biofuels.


Lipases Solid-state fermentation Rhizopus microsporus Esterification Biodiesel 



Research scholarships were granted to Nadia Krieger and David Mitchell by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil) and to Vanderleia Botton by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

449_2018_1892_MOESM1_ESM.docx (48 kb)
Supplementary material 1 (DOCX 48 KB)
449_2018_1892_MOESM2_ESM.docx (34 kb)
Supplementary material 2 (DOCX 33 KB)
449_2018_1892_MOESM3_ESM.docx (28 kb)
Supplementary material 3 (DOCX 27 KB)
449_2018_1892_MOESM4_ESM.docx (28 kb)
Supplementary material 4 (DOCX 27 KB)


  1. 1.
    Van Gerpen J (2005) Biodiesel processing and production. Fuel Process Technol 86:1097–1107CrossRefGoogle Scholar
  2. 2.
    Bankovic-Ilic IB, Stamenkovic OS, Veljkovic VB (2012) Biodiesel production from non-edible plant oils. Renew Sust Energ Rev 16:3621–3647CrossRefGoogle Scholar
  3. 3.
    Véras IC, Silva FAL, Ferrão-Gonzales AD, Moreau VH (2011) One-step enzymatic production of fatty acid ethyl ester from high-acidity waste feedstocks in solvent-free media. Bioresour Technol 102:9653–9658CrossRefGoogle Scholar
  4. 4.
    Hama S, Kondo A (2013) Enzymatic biodiesel production: An overview of potential feedstocks and process development. Bioresour Technol 135:386–395CrossRefGoogle Scholar
  5. 5.
    Aguieiras ECG, Cavalcanti EDC, Castro AM, Langone MAP, Freire DMG (2014) Biodiesel production from Acrocomia aculeata acid oil by (enzyme/enzyme) hydroesterification process: use of vegetable lipase and fermented solid as low-cost biocatalysts. Fuel 135:315–321CrossRefGoogle Scholar
  6. 6.
    Cavalcanti-Oliveira ED, Silva PR, Ramos AP, Aranda DAG, Freire DMG (2011) Study of soybean oil hydrolysis catalyzed by Thermomyces lanuginosus lipase and its application to biodiesel production via hydroesterification. Enzyme Res 2011:1–9CrossRefGoogle Scholar
  7. 7.
    Aguieiras ECG, Barros DSN, Sousa H, Fernandez-Lafuente R, Freire DMG (2017) Influence of the raw material on the final properties of biodiesel produced using lipase from Rhizomucor miehei grown on babassu cake as biocatalyst of esterification reactions. Renew Energy 113:112–118CrossRefGoogle Scholar
  8. 8.
    Todeschini JKP, Aguieiras ECG, Castro AM, Langone MAP, Freire DMG, Rodrigues RC (2016) Synthesis of butyl esters via ultrasound-assisted transesterification of macaúba (Acrocomia aculeata) acid oil using a biomass-derived fermented solid as biocatalyst. J Mol Catal B Enzym 133:S213–S219CrossRefGoogle Scholar
  9. 9.
    Tan T, Lu J, Nie K, Deng L, Wang F (2010) Biodiesel production with immobilized lipase: a review. Biotechnol Adv 28:628–634CrossRefGoogle Scholar
  10. 10.
    Tan T, Shang F, Zhang X (2010) Current development of biorefinery in China. Biotechnol Adv 28:543–555CrossRefGoogle Scholar
  11. 11.
    Aguieiras ECG, Cavalcanti-Oliveira ED, Freire DMG (2015) Current status and new developments of biodiesel production using fungal lipases: a review. Fuel 159:52–67CrossRefGoogle Scholar
  12. 12.
    Dias GS, Luz LFL Jr, Mitchell DA, Krieger N (2017) Scale-up of biodiesel synthesis in a closed-loop packed-bed bioreactor system using the fermented solid produced by Burkholderia lata LTEB11. Chem Eng J 316:341–349CrossRefGoogle Scholar
  13. 13.
    Soares D, Pinto AF, Gonçalves AG, Mitchell DA, Krieger N (2013) Biodiesel production from soybean soapstock acid oil by hydrolysis in subcritical water followed by lipase-catalyzed esterification using a fermented solid in a packed-bed reactor. Biochem Eng J 81:15–23CrossRefGoogle Scholar
  14. 14.
    Galeano JD, Mitchell DA, Krieger N (2017) Biodiesel production by solvent-free ethanolysis of palm oil catalyzed by fermented solids containing lipases of Burkholderia contaminans. Biochem Eng J 127:77–86CrossRefGoogle Scholar
  15. 15.
    Zago E, Botton V, Alberton D, Córdova J, Yamamoto CI, Côcco LC, Mitchell DA, Krieger N (2014) Synthesis of ethylic esters for biodiesel purposes using lipases naturally immobilized in a fermented solid produced using Rhizopus microsporus. Energy Fuels 28:5197–5203CrossRefGoogle Scholar
  16. 16.
    Salum TFC, Villeneuve P, Barea B, Yamamoto CI, Côcco LC, Mitchell DA, Krieger N (2010) Synthesis of biodiesel in column fixed-bed bioreactor using the fermented solid produced by Burkholderia cepacia LTEB11. Process Biochem 45:1348–1354CrossRefGoogle Scholar
  17. 17.
    Han B-Z, Nout RMJ (2000) Effects of temperature, water activity and gas atmosphere on mycelial growth of tempe fungi Rhizopus microsporus var. microsporus and R. microsporus var. oligosporus. World J Microb Biot 16:853–858CrossRefGoogle Scholar
  18. 18.
    Pitol LO, Finkler ATJ, Dias GS, Machado AS, Zanin GM, Mitchell DA, Krieger K (2017) Optimization studies to develop a low-cost medium for production of the lipases of Rhizopus microsporus by solid-state fermentation and scale-up of the process to a pilot packed-bed bioreactor. Process Biochem 62:37–47CrossRefGoogle Scholar
  19. 19.
    Alberton D, Mitchell DA, Cordova J, Zamora PP, Krieger N (2010) Production of a fermented solid containing lipases of Rhizopus microsporus and its application in the pre-hydrolysis of a high-fat dairy wastewater. Food Technol Biotech 48:28–35Google Scholar
  20. 20.
    Rodriguez JA, Mateos JC, Nungaray J, González V, Bhagnagar T, Roussos S, Cordova J, Baratti J (2006) Improving lipase production by nutrient source modification using Rhizopus homothallicus cultured in solid state fermentation. Process Biochem 41:2264–2269CrossRefGoogle Scholar
  21. 21.
    Tiss A, Carriere F, Verger R (2001) Effects of Arabic gum on interfacial lipases binding and activity. Anal Biochem 294:36–43CrossRefGoogle Scholar
  22. 22.
    Lowry RR, Tinsley JI (1976) Rapid colorimetric determination of free acids. J Am Oil Chem Soc 53:470–472CrossRefGoogle Scholar
  23. 23.
    Johnson RA, Wichern DW (1992) Applied multivariate statistical analysis. Upper Saddle River, New JerseyGoogle Scholar
  24. 24.
    European Standard EN 14103 (2003) Fat and oil derivatives, fatty acid methyl esters, determination of ester and linolenic acid methyl ester contents. European Committee for StandardizationGoogle Scholar
  25. 25.
    Chen J-W, Wu W-T (2003) Regeneration of immobilized Candida antarctica lipase for transesterification. J Biosci Bioeng 95:466–469CrossRefGoogle Scholar
  26. 26.
    Guldhe A, Singh B, Mutanda T, Permaul K, Bux F (2015) Advances in synthesis of biodiesel via enzyme catalysis: novel and sustainable approaches. Renew Sust Energ Rev 41:1447–1464CrossRefGoogle Scholar
  27. 27.
    Al-Zuhair S, Lig FW, Jun LS (2007) Proposed kinetic mechanism of the production of biodiesel from palm oil using lipase. Process Biochem 42:951–960CrossRefGoogle Scholar
  28. 28.
    Yadav GD, Devi KM (2004) Immobilized lipase-catalysed esterification and transesterification reactions in non-aqueous media for the synthesis of tetrahydrofurfuryl butyrate: comparison and kinetic modeling. Chem Eng Sci 59:373–383CrossRefGoogle Scholar
  29. 29.
    Stergiou P-Y, Foukis A, Filippou M, Koukouritaki M, Parapouli M, Theodorou LG, Hatziloukas E, Afendra A, Pandey A, Papamichael EM (2013) Advances in lipase-catalyzed esterification reactions. Biotechnol Adv 31:1846–1859CrossRefGoogle Scholar
  30. 30.
    Chaibakhsh N, Rahman MBA, Basri M, Salleh AB, Rahman RNZRA. (2009) Effect of alcohol chain length on the optimum conditions for lipase-catalyzed synthesis of adipate esters. Biocatal Biotransformation 27:303–308CrossRefGoogle Scholar
  31. 31.
    Shimada Y, Watanabe Y, Samukawa T, Sugihara A, Noda H, Fukuda H, Tominaga T (1999) Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. J Am Oil Chem Soc 76:789–793CrossRefGoogle Scholar
  32. 32.
    Panchal T, Chauhan D, Thomas M, Patel J (2015) Bio based grease a value added product from renewable resources. Ind Crop Prod 63:48–52CrossRefGoogle Scholar
  33. 33.
    Trivedi T, Aila M, Sharma CD, Gupta P, Kaul S (2015) Clean synthesis of biolubricant range esters using novel liquid lipase enzyme in solvent free medium. Springerplus 4:165CrossRefGoogle Scholar
  34. 34.
    Horner D (2002) Recent trends in environmentally friendly lubricants. J Synth Lubr 18:327–347CrossRefGoogle Scholar
  35. 35.
    Bucalá V, Foresti ML, Trubiano G, Ferreira ML, Briozzo M, Bottini S (2006) Analysis of solvent-free ethyl oleate enzymatic synthesis at equilibrium conditions. Enzyme Microb Tech 38:914–920CrossRefGoogle Scholar
  36. 36.
    Sandoval G, Condoret JS, Monsan P, Marty A (2002) Esterification by immobilized lipase in solvent-free media: kinetic and thermodynamic arguments. Biotechnol Bioeng 78:313–320CrossRefGoogle Scholar
  37. 37.
    Soares D, Serres JDS, Corazza ML, Mitchell DA, Gonçalves AG, Krieger N (2015) Analysis of multiphasic behavior during the ethyl-esterification of fatty acids catalyzed by a fermented solid with lipolytic activity in a packed-bed bioreactor in a closed-loop batch system. Fuel 159:364–372CrossRefGoogle Scholar
  38. 38.
    Foresti ML, Pedernera M, Bucalá V, Ferreira ML (2007) Multiple effects of water on solvent-free enzymatic esterifications. Enzyme Microb Tech 41:62–70CrossRefGoogle Scholar
  39. 39.
    Foresti ML, Errazu A, Ferreira ML (2005) Effect of several reaction parameters in the solvent-free ethyl oleate synthesis using Candida rugosa lipase immobilised on polypropylene. Biochem Eng J 25:69–77CrossRefGoogle Scholar
  40. 40.
    Chen JW, Wu WT (2003) Regeneration of immobilized Candida antarctica lipase for transesterification. J Biosci Bioeng 95:466–469CrossRefGoogle Scholar
  41. 41.
    Fallavena LP, Antunes FHF, Alves JS, Paludo N, Ayub MAZ, Fernández-Lafuente R, Rodrigues RC (2015) Ultrasound technology and molecular sieves improve the thermodynamically controlled esterification of butyric acid mediated by immobilized lipase from Rhizomucor miehei. RSC Adv 4:8675–8681CrossRefGoogle Scholar
  42. 42.
    Botton V (2014) Síntese de ésteres etílicos catalisada pela adição direta desólido fermentado de Rhizopus microsporus CBPQA 312–07 DRM em sistema livre de solventes (Doctoral dissertation). . Accessed 2 Sep 2017
  43. 43.
    LEGISWEB (2018) Resolução ANP Nº 45 DE 25/08/2014. Accessed 19 Jan 2018
  44. 44.
    Meng Y, Wang G, Yang N, Zhou Z, Juan Y, Liang X, Chen J, Li Y, Li J (2011) Two-step synthesis of fatty acid ethyl ester from soybean oil catalyzed by Yarrowia lipolytica lipase. Biotechnol Biofuels 4:1–9CrossRefGoogle Scholar
  45. 45.
    Adachi D, Hama S, Nakashima K, Bogaki T, Ogino C, Kondo A (2013) Production of biodiesel from plant oil hydrolysates using an Aspergillus oryzae whole-cell biocatalyst highly expressing Candida antarctica lipase B. Bioresour Technol 135:410–416CrossRefGoogle Scholar
  46. 46.
    Oliveira F, Souza CE, Peclat VROL., Salgado JM, Ribeiro BD, Coelho MAZ, Venâncio A, Belo I (2017) Optimization of lipase production by Aspergillus ibericus from oil cakes and its application in esterification reactions. Food Bioprod Process 102:268–277CrossRefGoogle Scholar
  47. 47.
    Suwanno S, Rakkan T, Yunu T, Paichid N, Kimtun P, Prasertsan P, Sangkharak K (2017) The production of biodiesel using residual oil from palm oil mill effluent and crude lipase from oil palm fruit as an alternative substrate and catalyst. Fuel 195:82–87CrossRefGoogle Scholar
  48. 48.
    Li A, Ngo TPN, Yan J, Tian K, Li Z (2012) Whole-cell based solvent-free system for one-pot production of biodiesel from waste grease. Bioresour Technol 114:725–729CrossRefGoogle Scholar
  49. 49.
    Liu Y, Li C, Meng X, Yan Y (2013) Biodiesel synthesis directly catalyzed by the fermented solid of Burkholderia cenocepacia via solid state fermentation. Fuel Process Technol 106:303–309CrossRefGoogle Scholar
  50. 50.
    Liu Y, Li C, Wang S, Chen W (2014) Solid-supported microorganism of Burkholderia cenocepacia cultured via solid state fermentation for biodiesel production: optimization and kinetics. Appl Energy 113:713–721CrossRefGoogle Scholar
  51. 51.
    Stamenkovic OS, Velickovic´ AV, Veljkovic VB (2011) The production of biodiesel from vegetable oils by ethanolysis: current state and perspectives. Fuel 90:3141–3155CrossRefGoogle Scholar
  52. 52.
    Bressani APP, Garcia KCA, Hirata DB, Mendes AA (2015) Production of alkyl esters from macaw palm oil by a sequential hydrolysis/esterification process using heterogeneous biocatalysts: optimization by response surface methodology. Bioprocess Biosyst Eng 38:287–297CrossRefGoogle Scholar
  53. 53.
    Ghamgui H, Karra-Chaabouni M, Gargouri Y (2004) 1-Butyl oleate synthesis by immobilized lipase from Rhizopus oryzae: a comparative study between n-hexane and solvent-free system. Enzyme Microb Tech 35:355–363CrossRefGoogle Scholar
  54. 54.
    Linko YY, Lamsa M, Huhtala A, Rantanen O (1995) Lipase biocatalysis in the production of esters. J Am Oil Chem Soc 72:1293–1299CrossRefGoogle Scholar
  55. 55.
    Lage FAP, Bassi JJ, Corradini MCC, Todero LM, Luiz JHH, Mendes AA (2016) Preparation of a biocatalyst via physical adsorption of lipase from Thermomyces lanuginosus on hydrophobic support to catalyze biolubricant synthesis by esterification reaction in a solvent-free system. Enzyme Microb Tech 84:56–67CrossRefGoogle Scholar
  56. 56.
    Salih N, Salimon J, Yousif E (2011) Synthesis of oleic acid based esters as potential basestock for biolubricant production. Turk J Eng Env Sci 35:115–123Google Scholar
  57. 57.
    Salimon J, Salih N, Yousif E (2012) Biolubricant basestocks from chemically modified ricinoleic acid. J King Saud Univ Sci 24:11–17CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Vanderleia Botton
    • 1
  • Leandro Piovan
    • 2
  • Henry França Meier
    • 1
  • David Alexander Mitchell
    • 3
  • Jesús Cordova
    • 4
  • Nadia Krieger
    • 2
  1. 1.Departamento de Engenharia QuímicaUniversidade Regional de BlumenauBlumenauBrazil
  2. 2.Departamento de QuímicaUniversidade Federal do ParanáCuritibaBrazil
  3. 3.Departamento de Bioquímica e Biologia MolecularUniversidade Federal do ParanáCuritibaBrazil
  4. 4.Departamento de Quimica, CUCEIUniversidad de GuadalajaraGuadalajaraMexico

Personalised recommendations