Bioprocess and Biosystems Engineering

, Volume 41, Issue 4, pp 565–571 | Cite as

An effective surfactant-assisted hydrothermal pretreatment strategy for bioethanol production from chili post-harvest residue by separate hydrolysis and fermentation

  • Raveendran Sindhu
  • Parameswaran Binod
  • Anil Kuruvilla Mathew
  • Amith Abraham
  • Ashok Pandey
  • Edgard Gnansounou
  • Galliano Eulogio Castro
Research Paper


Surfactants play major role in the delignification of lignocellulosic biomass. Surfactant-assisted hydrothermal pretreatment was evaluated for chili post-harvest residue. Maximum reducing sugar yield of 0.445 g per g of dry biomass (g/g) was obtained when surfactant PEG 6000 was used. Compositional analysis revealed an efficient removal of lignin and hemicelluloses from the pretreated biomass. Fermentation inhibitors such as furfural, 5-hydroxymethylfurfural and organic acids were absent in the hydrolyzate. After pretreatment, the biomass can be directly hydrolyzed without any neutralization, washing and drying, and the hydrolyzate is devoid of major fermentation inhibitors. Fermentation with Saccharomyces cerevisiae yielded 1.84% of ethanol with a fermentation efficiency of 63.88%.


Pretreatment Bioethanol Hydrolysis Chili 



Financial support from MNRE, Government of India, New Delhi and TIFAC, New Delhi, is acknowledged. Raveendran Sindhu acknowledges financial support from DBT, New Delhi, for DBT Bio-CARe programme. Financial support from EPFL, Lausanne, Switzerland, and Marie Curie Actions-International Research Staff Exchange Scheme—Contact Number 318931 is also acknowledged.


  1. 1.
    Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energ Conv Manag 52:858–875CrossRefGoogle Scholar
  2. 2.
    Zhu JY, Wang GS, Pan XJ, Gleisner R (2008) The status and key barriers in lignocellulosic ethanol production: a technological perspective. In: International conference on biomass energy technologies, Guangzhou, China, December 3–5Google Scholar
  3. 3.
    Chandel AK, Es C, Rudravaram R, Narasu ML, Rao LV, Ravindra P (2007) Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Mol Biol Rev 2:14–32Google Scholar
  4. 4.
    Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2:51–68Google Scholar
  5. 5.
    Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2:26–40CrossRefGoogle Scholar
  6. 6.
    Eriksson T, Borjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb Technol 31:353–364CrossRefGoogle Scholar
  7. 7.
    Kurakake M, Ooshima H, Kato J, Harano Y (1994) Pretreatment of bagasse by nonionic surfactant for the enzymatic-hydrolysis. BioresourTechnol 49:247–251CrossRefGoogle Scholar
  8. 8.
    Eckard AD, Muthukumarappan K, Gibbons W (2013) A review of the role of amphiphiles in biomass to ethanol conversion. Appl Sci 3:396–419CrossRefGoogle Scholar
  9. 9.
    Escalante M, Rodriguez-Malaver AJ, Araujo E, Gonzalez AM, Rojas OJ, Penaloza N, Bullon J, Lara MA, Dmitrieva N, Perez-Perez E (2005) Effect of surfactants on Fenton’s reagent-mediated degradation of Kraft black liquor. J Environ Biol 26:709–718Google Scholar
  10. 10.
    Sindhu R, Kuttiraja M, Binod P, Preeti VE, Sandhya SV, Vani S, Sukumaran RK, Pandey A (2012) Surfactant-assisted acid pretreatment of sugarcane tops for bioethanol production. Appl Biochem Biotechnol 167:1513–1526CrossRefGoogle Scholar
  11. 11.
    Sindhu R, Kuttiraja M, Preeti VE, Vani S, Sukumaran RK, Binod P (2013) A novel surfactant-assisted ultrasound pretreatment of sugarcane tops for improved enzymatic release of sugars. Bioresour Technol 135:67–72CrossRefGoogle Scholar
  12. 12.
    Nasirpour N, Mousavi SM, Shojaosadati SA (2014) A novel surfactant-assisted ionic liquid pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis. Bioresour Technol 169:33–37CrossRefGoogle Scholar
  13. 13.
    Qi B, Chen X, Wana Y (2010) Pretreatment of wheat straw by nonionic surfactant-assisted dilute acid for enhancing enzymatic hydrolysis and ethanol production. Bioresour Technol 101:4875–4883CrossRefGoogle Scholar
  14. 14.
    Kapu NUS, Manning M, Hurley TB, Voigt J, Cosgrove DJ, Romaine CP (2012) Surfactant-assisted pretreatment and enzymatic hydrolysis of spent mushroom compost for the production of sugars. Bioresour Technol 114:399–405CrossRefGoogle Scholar
  15. 15.
    Cao S, Aita GM (2013) Enzymatic hydrolysis and ethanol yields of combined surfactant and dilute ammonia treated sugarcane bagasse. Bioresour Technol 131:357–364CrossRefGoogle Scholar
  16. 16.
    Eckard AE, Muthukumarappan K, Gibbons W (2012) Pretreatment of extruded corn stover with polyethylene glycol to enhance enzymatic hydrolysis: optimization, kinetics and mechanism of action. Bioenerg Res 5:424–438CrossRefGoogle Scholar
  17. 17.
    Qing Q, Yang B, Wyman CE (2010) Impact of surfactants on pretreatment of corn stover. Bioresour Technol 101:5941–5951CrossRefGoogle Scholar
  18. 18.
    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) NREL Technical Report, NREL/TP-510-42618Google Scholar
  19. 19.
    Miller GM (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 31:426–428CrossRefGoogle Scholar
  20. 20.
    Sindhu R, Binod P, Janu KU, Sukumaran RK, Pandey A (2012) Organosolvent pretreatment and enzymatic hydrolysis of rice straw for the production of bioethanol. World J Microbiol Biotechnol 28:473–483CrossRefGoogle Scholar
  21. 21.
    Helle SS, Duff SJB, Cooper DG (1993) Effect of surfactants on cellulose hydrolysis. Biotech Bioeng 42:611–617CrossRefGoogle Scholar
  22. 22.
    Sindhu R, Gnansounou E, Pandey A, Binod P (2015) A novel crude glycerol assisted surfactant pretreatment strategy of chili post-harvest residue for bioethanol production. Biofuels. Google Scholar
  23. 23.
    Abraham RE, Barrow CJ, Puri M (2013) Relationship to reducing sugar production and scanning electron microscope structure to pretreated hemp hurd biomass (Cannabis sativa). Biomass Bioenerg 58:180–187CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Raveendran Sindhu
    • 1
  • Parameswaran Binod
    • 1
  • Anil Kuruvilla Mathew
    • 1
  • Amith Abraham
    • 1
  • Ashok Pandey
    • 2
  • Edgard Gnansounou
    • 3
  • Galliano Eulogio Castro
    • 4
  1. 1.Microbial Process and Technology DivisionNational Institute for Interdisciplinary Science and Technology, CSIRTrivandrumIndia
  2. 2.CSIR-Indian Institute of Toxicology Research (CSIR-IITR)LucknowIndia
  3. 3.Ecole Polytechnique Federale de LausanneInstitute of Urban and Regional SciencesLausanneSwitzerland
  4. 4.Dpt. Ingeniería Química, Ambiental y de los Materiales EdificioUniversidad de JaénJaénSpain

Personalised recommendations