Skip to main content
Log in

Pilot-scale process development for low-cost production of a thermostable biodiesel refining enzyme in Escherichia coli

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Biodiesels produced from vegetable oils have a major quality problem due to the presence of steryl glucosides (SGs), which form precipitates that clog filters and cause engine failures. Recently, we described an enzymatic process for removing SGs from biodiesel. However, industrial adoption of this technology was hindered by the cost of the steryl glucosidase (SGase) enzyme used. Here we report the development and validation at the pilot scale of a cost-efficient process for manufacturing the SGase. First, we tested various low-cost carbon sources for the Escherichia coli producing strain, ultimately developing a fed-batch fermentation process that utilizes crude glycerol as a feedstock. Next, we designed an efficient process for isolating the SGase. That process uses a novel thermolysis approach in the presence of a non-ionic detergent, centrifugation to separate the solids, and ultrafiltration to concentrate and formulate the final product. Our cost analysis indicates that on a large scale, the dose of enzyme required to eliminate SGs from each ton of biodiesel will have a manufacturing cost below $1. The new process for manufacturing the SGase, which will lead to biodiesels of a higher quality, should contribute to facilitate the global adoption of this renewable fuel. Our technology could also be used to manufacture other thermostable proteins in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lane J (2014) Biofuels Mandates Around the World: 2015

  2. OCED F (2011) OECD-FAO agricultural outlook 2011–2020. Organisation for Economic Co-operation and Development (OECD) Publishing, doi, Paris

    Google Scholar 

  3. Ringwald S (2007) Biodiesel characterization in the QC environment. The 98th AOCS annual meeting abstracts. AOCS Press, Urbana

  4. Tang H, De Guzman R, Salley S, Ng KS (2010) Comparing process efficiency in reducing steryl glucosides in biodiesel. J Am Oil Chem Soc 87:337–345

    Article  CAS  Google Scholar 

  5. Bondioli P, Cortesi N, Mariani C (2008) Identification and quantification of steryl glucosides in biodiesel. Eur J Lipid Sci Technol 110:120–126

    Article  CAS  Google Scholar 

  6. Haagenson DM, Perleberg JR, Wiesenborn DP (2014) Fractionation of canola biodiesel sediment for quantification of steryl glucosides with HPLC/ELSD. J Am Oil Chem Soc 91:497–502

    Article  CAS  Google Scholar 

  7. Pfalzgraf LLI, Foster J, Poppe G (2007) The effect of minor components on cloud point and filterability. Inf Suppl Biorenew Resour 4:17–21

    Google Scholar 

  8. Camerlynck S, Chandler J, Hornby B, van Zuylen I (2012) FAME filterability: understanding and solutions. SAE Int J Fuels Lubr 5:968–976

    Article  CAS  Google Scholar 

  9. Plata V, Haagenson D, Dağdelen A, Wiesenborn D, Kafarov V (2015) Improvement of palm oil biodiesel filterability by adsorption methods. J Am Oil Chem Soc 92:893–903

    Article  CAS  Google Scholar 

  10. Peiru S, Aguirre A, Eberhardt F, Braia M, Cabrera R, Menzella HG (2015) An industrial scale process for the enzymatic removal of steryl glucosides from biodiesel. Biotechnol Biofuels 8:223

    Article  Google Scholar 

  11. Eberhardt F, Aguirre A, Menzella HG, Peiru S (2017) Strain engineering and process optimization for enhancing the production of a thermostable steryl glucosidase in Escherichia coli. J Indus Microbiol Biotechnol 44:141–147

    Article  CAS  Google Scholar 

  12. Jiang G, Hill DJ, Kowalczuk M, Johnston B, Adamus G, Irorere V, Radecka I (2016) Carbon sources for polyhydroxyalkanoates and an integrated biorefinery. Int J Mol Sci 17:1157

    Article  Google Scholar 

  13. Rude MA, Schirmer A (2009) New microbial fuels: a biotech perspective. Curr Opin Microbiol 12:274–281

    Article  CAS  Google Scholar 

  14. Ren X, Yu D, Han S, Feng Y (2007) Thermolysis of recombinant Escherichia coli for recovering a thermostable enzyme. Biochem Eng J 33:94–98

    Article  CAS  Google Scholar 

  15. Ren X, Yu D, Yu L, Gao G, Han S, Feng Y (2007) A new study of cell disruption to release recombinant thermostable enzyme from Escherichia coli by thermolysis. J Biotechnol 129:668–673

    Article  CAS  Google Scholar 

  16. Balasundaram B, Harrison S, Bracewell DG (2009) Advances in product release strategies and impact on bioprocess design. Trends Biotechnol 27:477–485

    Article  CAS  Google Scholar 

  17. Koschorreck K, Wahrendorff F, Biemann S, Jesse A, Urlacher VB (2017) Cell thermolysis–A simple and fast approach for isolation of bacterial laccases with potential to decolorize industrial dyes. Process Biochem 56:171–176

    Article  CAS  Google Scholar 

  18. Aguirre A, Peiru S, Eberhardt F, Vetcher L, Cabrera R, Menzella HG (2014) Enzymatic hydrolysis of steryl glucosides, major contaminants of vegetable oil-derived biodiesel. Appl Microbiol Biotechnol 98:4033–4040

    Article  CAS  Google Scholar 

  19. Lee SY (1996) High cell-density culture of Escherichia coli. Trends Biotechnol 14:98–105

    Article  CAS  Google Scholar 

  20. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences 97, 6640–6645

  21. Kodumal SJ, Patel KG, Reid R, Menzella HG, Welch M, Santi DV (2004) Total synthesis of long DNA sequences: synthesis of a contiguous 32-kb polyketide synthase gene cluster. Proceedings of the National Academy of Sciences of the United States of America 101, 15573–15578

  22. Yee L, Blanch H (1993) Recombinant trypsin production in high cell density fed-batch cultures in Escherichia coli. Biotechnol Bioeng 41:781–790

    Article  CAS  Google Scholar 

  23. Eiteman MA, Altman E (2006) Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol 24:530–536

    Article  CAS  Google Scholar 

  24. Menzella HG, Ceccarelli EA, Gramajo HC (2003) Novel Escherichia coli strain allows efficient recombinant protein production using lactose as inducer. Biotechnol Bioeng 82:809–817

    Article  CAS  Google Scholar 

  25. Bruschi M, Krömer JO, Steen JA, Nielsen LK (2014) Production of the short peptide surfactant DAMP4 from glucose or sucrose in high cell density cultures of Escherichia coli BL21 (DE3). Microbial Cell Factories 13:99

    Article  Google Scholar 

  26. Ramalingam S, Gautam P, Mukherjee KJ, Jayaraman G (2007) Effects of post-induction feed strategies on secretory production of recombinant streptokinase in Escherichia coli. Biochem Eng J 33:34–41

    Article  CAS  Google Scholar 

  27. Wong HH, Kim YC, Lee SY, Chang HN (1998) Effect of post-induction nutrient feeding strategies on the production of bioadhesive protein in Escherichia coli. Biotechnol Bioeng 60:271–276

    Article  CAS  Google Scholar 

  28. Gao H-J, Wu Q, Chen G-Q (2002) Enhanced production of D-(–)-3-hydroxybutyric acid by recombinant Escherichia coli. FEMS Microbiol Lett 213:59–65

    CAS  Google Scholar 

  29. Jensen EB, Carlsen S (1990) Production of recombinant human growth hormone in Escherichia coli: expression of different precursors and physiological effects of glucose, acetate, and salts. Biotechnol Bioeng 36:1–11

    Article  CAS  Google Scholar 

  30. Strandberg L, Enfors S-O (1991) Batch and fed batch cultivations for the temperature induced production of a recombinant protein in Escherichia coli. Biotech Lett 13:609–614

    Article  CAS  Google Scholar 

  31. De Anda R, Lara AR, Hernández V, Hernández-Montalvo V, Gosset G, Bolívar F, Ramírez OT (2006) Replacement of the glucose phosphotransferase transport system by galactose permease reduces acetate accumulation and improves process performance of Escherichia coli for recombinant protein production without impairment of growth rate. Metabol Eng 8:281–290

    Article  Google Scholar 

  32. Hellmuth K, Korz D, Sanders E, Deckwer W-D (1994) Effect of growth rate on stability and gene expression of recombinant plasmids during continuous and high cell density cultivation of Escherichia coli TG1. J Biotechnol 32:289–298

    Article  CAS  Google Scholar 

  33. Jin D, Chung BH, Do Hwang Y, Park YH (1992) Glucose-limited fed-batch culture of Escherichia coli for production of recombinant human interleukin-2 with the DO-stat method. J Ferment Bioeng 74:196–198

    Article  Google Scholar 

  34. Junker BH (2004) Scale-up methodologies for Escherichia coli and yeast fermentation processes. J Biosci Bioeng 97:347–364

    Article  CAS  Google Scholar 

  35. Ju L-K, Chase G (1992) Improved scale-up strategies of bioreactors. Bioprocess Biosyst Eng 8:49–53

    Article  CAS  Google Scholar 

  36. Paul EL, Atiemo-Obeng VA, Kresta SM (2004) Handbook of industrial mixing: science and practice. John Wiley & Sons

  37. Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27:153–176

    Article  CAS  Google Scholar 

  38. Holmberg A, Ranta J (1982) Procedures for parameter and state estimation of microbial growth process models. Automatica 18:181–193

    Article  Google Scholar 

  39. O’Sullivan LM, Patel S, Ward JM, Woodley JM, Doig SD (2001) Large scale production of cyclohexanone monooxygenase from Escherichia coli TOP10 pQR239. Enzyme Microb Technol 28:265–274

    Article  Google Scholar 

  40. Xu B, Jahic M, Blomsten G, Enfors S-O (1999) Glucose overflow metabolism and mixed-acid fermentation in aerobic large-scale fed-batch processes with Escherichia coli. Appl Microbiol Biotechnol 51:564–571

    Article  Google Scholar 

  41. Bylund F, Collet E, Enfors S-O, Larsson G (1998) Substrate gradient formation in the large-scale bioreactor lowers cell yield and increases by-product formation. Bioprocess Eng 18:171–180

    Article  CAS  Google Scholar 

  42. Enfors S-O, Jahic M, Rozkov A, Xu B, Hecker M, Jürgen B, Krüger E, Schweder T, Hamer G, O’beirne D (2001) Physiological responses to mixing in large scale bioreactors. J Biotechnol 85:175–185

    Article  CAS  Google Scholar 

  43. Middelberg AP, O’Neill BK, Bogle L, David I, Snoswell MA (1991) A novel technique for the measurement of disruption in high-pressure homogenization: Studies on E. coli containing recombinant inclusion bodies. Biotechnol Bioeng 38:363–370

    Article  CAS  Google Scholar 

  44. Sauer T, Robinson CW, Glick BR (1989) Disruption of native and recombinant Escherichia coli in a high-pressure homogenizer. Biotechnol Bioeng 33:1330–1342

    Article  CAS  Google Scholar 

  45. Matsui I, Sakai Y, Matsui E, Kikuchi H, Kawarabayasi Y, Honda K (2000) Novel substrate specificity of a membrane-bound β-glycosidase from the hyperthermophilic archaeon Pyrococcus horikoshii. FEBS letters 467:195–200

    Article  CAS  Google Scholar 

  46. Watson J, Cumming R, Street G, Tuffnell J (1987) Release of intracellular protein by thermolysis, pp 105–109

  47. Zhao CX, Dwyer MD, Yu AL, Wu Y, Fang S, Middelberg AP (2015) A simple and low-cost platform technology for producing pexiganan antimicrobial peptide in E. coli. Biotechnol Bioeng 112:957–964

    Article  CAS  Google Scholar 

  48. Potvin G, Ahmad A, Zhang Z (2012) Bioprocess engineering aspects of heterologous protein production in Pichia pastoris: a review. Biochem Eng J 64:91–105

    Article  CAS  Google Scholar 

  49. Klein-Marcuschamer D, Simmons BA, Blanch HW (2011) Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment. Biofuels Bioprod Biorefin 5:562–569

    Article  CAS  Google Scholar 

  50. Janet L (2016) ENERGÍAS RENOVABLES REPORTE DE LA SITUACIÓN MUNDIAL, REN21 Paris. France

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo G. Menzella.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 16 KB)

Supplementary material 2 (JPG 129 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eberhardt, F., Aguirre, A., Paoletti, L. et al. Pilot-scale process development for low-cost production of a thermostable biodiesel refining enzyme in Escherichia coli. Bioprocess Biosyst Eng 41, 555–564 (2018). https://doi.org/10.1007/s00449-018-1890-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-1890-7

Keywords

Navigation