Skip to main content
Log in

Role of media composition in biomass and astaxanthin production of Haematococcus pluvialis under two-stage cultivation

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In the present study, the effects of four different culture media on the growth, astaxanthin production and morphology of Haematococcus pluvialis LUGU were studied under two-step cultivation. The interactions between astaxanthin synthesis and secondary messengers, reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPK) were also investigated. In the first green vegetative cell stage, maximal biomass productivity (86.54 mg L−1 day−1) was obtained in BBM medium. In the induction stage, the highest astaxanthin content (21.5 mg g−1) occurred in BG-11 medium, which was higher than in any other media. The expressions of MAPK and astaxanthin biosynthetic genes in BG-11 were higher than in any other media, whereas the ROS content was lower. Biochemical and physiological analyses suggested that the ROS, MAPK and astaxanthin biosynthetic gene expression was involved in astaxanthin biosynthesis in H. pluvialis under different culture media conditions. This study proposes a two-step cultivation strategy to efficiently produce astaxanthin using microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21(5):210–216

    Article  CAS  PubMed  Google Scholar 

  2. Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci 46(2):185–196

    Article  CAS  Google Scholar 

  3. Markou G, Nerantzis E (2013) Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv 31(8):1532–1542

    Article  CAS  PubMed  Google Scholar 

  4. Li J, Zhu D, Niu J, Shen S, Wang G (2011) An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnol Adv 29(6):568–574

    Article  CAS  PubMed  Google Scholar 

  5. Shah MMR, Liang Y, Cheng JJ, Daroch M (2016) Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Front Plant Sci 7:531

    PubMed  PubMed Central  Google Scholar 

  6. Scibilia L, Girolomoni L, Berteotti S, Alboresi A, Ballottari M (2015) Photosynthetic response to nitrogen starvation and high light in Haematococcus pluvialis. Algal Res 12:170–181

    Article  Google Scholar 

  7. Hong ME, Hwang SK, Chang WS, Kim BW, Lee J, Sim SJ (2015) Enhanced autotrophic astaxanthin production from Haematococcus pluvialis under high temperature via heat stress-driven Haber–Weiss reaction. Appl Microbiol Biot 99(12):5203–5215

    Article  CAS  Google Scholar 

  8. Sharma KK, Ahmed F, Schenk PM, Li Y (2015) UV-C mediated rapid carotenoid induction and settling performance of Dunaliella salina and Haematococcus pluvialis. Biotechnol Bioeng 112(10):2106–2114

    Article  CAS  PubMed  Google Scholar 

  9. Park JC, Choi SP, Hong ME, Sim SJ (2014) Enhanced astaxanthin production from microalga, Haematococcus pluvialis by two-stage perfusion culture with stepwise light irradiation. Bioprocess Biosyst Eng 37(10):2039–2047

    Article  CAS  PubMed  Google Scholar 

  10. Choi YE, Yun YS, Park JM, Yang JW (2011) Determination of the time transferring cells for astaxanthin production considering two-stage process of Haematococcus pluvialis cultivation. Bioresour Technol 102(24):11249–11253

    Article  CAS  PubMed  Google Scholar 

  11. Zhao Y, Li D, Ding K, Che R, Xu JW, Zhao P, Li T, Ma H, Yu X (2016) Production of biomass and lipids by the oleaginous microalgae Monoraphidium sp. QLY-1 through heterotrophic cultivation and photo-chemical modulator induction. Bioresour Technol 211:669–676

    Article  CAS  PubMed  Google Scholar 

  12. Fábregas J, Otero A, Maseda A, Dominguez A (2001) Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis. J Biotechnol 89(1):65–71

    Article  PubMed  Google Scholar 

  13. Zhang Z, Wang B, Hu Q, Sommerfeld M, Li Y (2016) A new paradigm for producing astaxanthin from the unicellular green alga Haematococcus pluvialis. Biotechnol Bioeng 113(10):2088–2099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shang M, Ding W, Zhao Y, Xu JW, Zhao P, Li T, Ma H, Yu X (2016) Enhanced astaxanthin production from Haematococcus pluvialis using butylated hydroxyanisole. J Biotechnol 236:199–207

    Article  CAS  PubMed  Google Scholar 

  15. Aflalo C, Meshulam Y, Zarka A, Boussiba S (2007) On the relative efficiency of two-vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnol Bioeng 98(1):300–305

    Article  CAS  PubMed  Google Scholar 

  16. George B, Pancha I, Desai C, Chokshi K, Paliwal C, Ghosh T, Mishra S (2014) Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus—a potential strain for bio-fuel production. Bioresour Technol 171:367–374

    Article  CAS  PubMed  Google Scholar 

  17. Rai MP, Gupta S (2017) Effect of media composition and light supply on biomass, lipid content and FAME profile for quality biofuel production from Scenedesmus abundans. Energy Convers Manag 141:85–92

    Article  CAS  Google Scholar 

  18. Zhao Y, Li D, Xu JW, Zhao P, Ma H, Yu X (2018) Melatonin enhances lipid production in Monoraphidium sp. QLY-1 under nitrogen deficiency conditions via a multi-level mechanism. Bioresour Technol 259:46–53

    Article  CAS  PubMed  Google Scholar 

  19. Ding W, Zhao P, Peng J, Zhao Y, Xu JW, Li T, Reiter RJ, Ma H, Yu X (2018) Melatonin enhances astaxanthin accumulation in the green microalga Haematococcus pluvialis by mechanisms possibly related to abiotic stress tolerance. Algal Res 33:256–265

    Article  Google Scholar 

  20. Moustafa K, AbuQamar S, Jarrar M, Al-Rajab AJ, Trémouillaux-Guiller J (2014) MAPK cascades and major abiotic stresses. Plant Cell Rep 33(8):1217–1225

    Article  CAS  PubMed  Google Scholar 

  21. Li Y, Sommerfeld M, Chen F, Hu Q (2008) Consumption of oxygen by astaxanthin biosynthesis: a protective mechanism against oxidative stress in Haematococcus pluvialis (Chlorophyceae). J Plant Physiol 165(17):1783–1797

    Article  CAS  PubMed  Google Scholar 

  22. Steinbrenner J, Linden H (2001) Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. Plant Physiol 125(2):810–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grünewald K, Hirschberg J, Hagen C (2001) Ketocarotenoid biosynthesis outside of plastids in the unicellular green alga Haematococcus pluvialis. J Biol Chem 276(8):6023–6029

    Article  PubMed  Google Scholar 

  24. Kathiresan S, Chandrashekar A, Ravishankar GA, Sarada R (2015) Regulation of astaxanthin and its intermediates through cloning and genetic transformation of β-carotene ketolase in Haematococcus pluvialis. J Biotechnol 196:33–41

    Article  CAS  PubMed  Google Scholar 

  25. Zhao Y, Shang M, Xu JW, Zhao P, Li T, Yu X (2015) Enhanced astaxanthin production from a novel strain of Haematococcus pluvialis using fulvic acid. Process Biochem 50(12):2072–2077

    Article  CAS  Google Scholar 

  26. Boussiba S, Vonshak A (1991) Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol 32(7):1077–1082

    Article  CAS  Google Scholar 

  27. Li D, Zhao Y, Ding W, Zhao P, Xu JW, Li T, Ma H, Yu X (2017) A strategy for promoting lipid production in green microalgae Monoraphidium sp. QLY-1 by combined melatonin and photoinduction. Bioresour Technol 235:104–112

    Article  CAS  PubMed  Google Scholar 

  28. Ding W, Zhao Y, Xu JW, Zhao P, Li T, Ma H, Reiter RJ, Yu X (2018) Melatonin: a multifunctional molecule that triggers defense responses against high light and nitrogen starvation stress in Haematococcus pluvialis. J Agric Food Chem 66(29):7701–7711

    Article  CAS  PubMed  Google Scholar 

  29. Kaewpintong K, Shotipruk A, Powtongsook S, Pavasant P (2007) Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor. Bioresour Technol 98(2):288–295

    Article  CAS  PubMed  Google Scholar 

  30. Singh P, Guldhe A, Kumari S, Rawat I, Bux F (2016) Combined metals and EDTA control: an integrated and scalable lipid enhancement strategy to alleviate biomass constraints in microalgae under nitrogen limited conditions. Energy Convers Manag 114:100–109

    Article  CAS  Google Scholar 

  31. Kona R, Hemalatha M, Srivastav KV, Mohan SV (2017) Regulatory effect of Fe-EDTA on mixotrophic cultivation of Chlorella sp. towards biomass growth and metabolite production. Bioresour Technol 244:1227–1234

    Article  CAS  PubMed  Google Scholar 

  32. Ruangsomboon S, Sornchai P, Prachom N (2018) Enhanced hydrocarbon production and improved biodiesel qualities of Botryococcus braunii KMITL 5 by vitamins thiamine, biotin and cobalamin supplementation. Algal Res 29:159–169

    Article  Google Scholar 

  33. Che R, Huang L, Yu X (2015) Enhanced biomass production, lipid yield and sedimentation efficiency by iron ion. Bioresour Technol 192:795–798

    Article  CAS  PubMed  Google Scholar 

  34. Wan M, Jin X, Xia J, Rosenberg JN, Yu G, Nie Z, Oyler GA, Betenbaugh MJ (2014) The effect of iron on growth, lipid accumulation, and gene expression profile of the freshwater microalga Chlorella sorokiniana. Appl Microbiol Biotechnol 98(22):9473–9481

    Article  CAS  PubMed  Google Scholar 

  35. Han D, Wang J, Sommerfeld M, Hu Q (2012) Susceptibility and protective mechanisms of motile and non motile cells of Haematococcus pluvialis (chlorophyceae) to photooxidative stress1. J Phycol 48(3):693–705

    Article  CAS  PubMed  Google Scholar 

  36. Sun Z, Cunningham FX, Gantt E (1998) Differential expression of two isopentenyl pyrophosphate isomerases and enhanced carotenoid accumulation in a unicellular chlorophyte. Proc Natl Acad Sci USA 95(19):11482–11488

    Article  CAS  PubMed  Google Scholar 

  37. Scherz-Shouval R, Elazar Z (2009) Monitoring starvation-induced reactive oxygen species formation. Method Enzymol 452:119–130

    Article  CAS  Google Scholar 

  38. Gwak Y, Hwang Y, Wang B, Kim M, Jeong J, Lee CG, Hu Q (2014) Comparative analyses of lipidomes and transcriptomes reveal a concerted action of multiple defensive systems against photooxidative stress in Haematococcus pluvialis. J Exp Bot 65(15):4317–4334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Inzé D, Montagu M Van (1995) Oxidative stress in plants. Curr Opin Biotechnol 6(2):153–158

    Article  Google Scholar 

  40. Asai S, Ohta K, Yoshioka H (2008) MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. Plant Cell 20(5):1390–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao R, Ng DHP, Fang L, Chow YYS, Lee YK (2016) MAPK in Dunaliella tertiolecta regulates glycerol production in response to osmotic shock. Eur J Phycol 51(2):119–128

    Article  CAS  Google Scholar 

  42. Raja V, Majeed U, Kang H, Andrabi KI, John R (2017) Abiotic stress: interplay between ROS, hormones and MAPKs. Environ Exp Bot 137:142–157

    Article  CAS  Google Scholar 

  43. Li Y, Sommerfeld M, Chen F, Hu Q (2010) Effect of photon flux densities on regulation of carotenogenesis and cell viability of Haematococcus pluvialis (Chlorophyceae). J Appl Phycol 22(3):253–263

    Article  CAS  PubMed  Google Scholar 

  44. Ding W, Peng J, Zhao Y, Zhao P, Xu JW, Li T, Yu X (2018) A strategy for boosting astaxanthin accumulation in green microalga Haematococcus pluvialis by using combined diethyl aminoethyl hexanoate and high light. J Appl Phycol. https://doi.org/10.1007/s10811-018-1561-8

    Article  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (no. 21766012 to X. Yu), the Key Science and Technology Project of Yunnan Province, China (2018ZG003 to X. Yu), and the National Natural Science Foundation of China (no. 21666012 to P. Zhao) supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuya Yu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Yue, C., Geng, S. et al. Role of media composition in biomass and astaxanthin production of Haematococcus pluvialis under two-stage cultivation. Bioprocess Biosyst Eng 42, 593–602 (2019). https://doi.org/10.1007/s00449-018-02064-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-02064-8

Keywords

Navigation