Butanol and butyric acid production from Saccharina japonica by Clostridium acetobutylicum and Clostridium tyrobutyricum with adaptive evolution

A Correction to this article was published on 20 May 2019

This article has been updated


Optimal conditions of hyper thermal (HT) acid hydrolysis of the Saccharina japonica was determined to a seaweed slurry content of 12% (w/v) and 144 mM H2SO4 at 160 °C for 10 min. Enzymatic saccharification was carried out at 50 °C and 150 rpm for 48 h using the three enzymes at concentrations of 16 U/mL. Celluclast 1.5 L showed the lowest half-velocity constant (Km) of 0.168 g/L, indicating a higher affinity for S. japonica hydrolysate. Pretreatment yielded a maximum monosaccharide concentration of 36.2 g/L and 45.7% conversion from total fermentable monosaccharides of 79.2 g/L with 120 g dry weight/L S. japonica slurry. High cell densities of Clostridium acetobutylicum and Clostridium tyrobutyricum were obtained using the retarding agents KH2PO4 (50 mM) and NaHCO3 (200 mM). Adaptive evolution facilitated the efficient use of mixed monosaccharides. Therefore, adaptive evolution and retarding agents can enhance the overall butanol and butyric acid yields from S. japonica.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Change history

  • 20 May 2019

    Unfortunately, the author name was wrongly published as Pailin Sukwang.instead of Pailin Sukwong.


  1. 1.

    Sjöblom M, Matsakas L, Christakopoulos P, Rova U (2015) Production of butyric acid by Clostridium tyrobutyricum (ATCC25755) using sweet sorghum stalks and beet molasses. Ind Crops Prod 74:535–544

    Article  CAS  Google Scholar 

  2. 2.

    Yang M, Kuittinen S, Zhang JH0, Vepsäläinen JK, Keinänen MK, Pappinen A (2015) Co-fermentation of hemicellulose and starch from barley straw and grain for efficient pentoses utilization in acetone-butanol-ethanol production. Bioresour Technol 17:128–135

    Article  CAS  Google Scholar 

  3. 3.

    van der Wal H, Sperber BLHM, Houweling-Tan B, Bakker RRC, Brandenburg W, López-Contreras AM (2013) Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. Bioresour Technol 128:431–437

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Jang JS, Cho YK, Jeong GT, Kim SK (2012) Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosyst Eng 35:11–18

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Lee JY, Li P, Lee JE, Ryu HJ, Oh KK (2013) Ethanol production from Saccharina japonica using an optimized extremely low acid pretreatment followed by simultaneous saccharification and fermentation. Bioresour Technol 127:119–125

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Qureshi N, Bowman MJ, Saha BC, Hector R, Berhow MA, Cotta MA (2012) Effect of cellulosic sugar degradation products (furfural and hydroxymethy furfural) on acetone-butanol-ethanol (ABE) fermentation using Clostridium beijerinckii P260. Food Bioprod Process 90:533–540

    Article  CAS  Google Scholar 

  7. 7.

    Lee SY, Park JH, Jang SH, Nielsen LK, Kim JH, Jung KS (2008) Fermentative butanol production by Clostridia. Biotechnol Bioeng 101:209–228

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Maddox IS, Steiner E, Hirsch S, Wessner S, Gutierrez NA, Gapes JR, Schuster KC (2000) The cause of acid crash and acidogenic fermentations during the batch acetone-butanol-ethanol (ABE) fermentation process. J Mol Microb Biotech 2:95–100

    CAS  Google Scholar 

  9. 9.

    Li SY, Srivastava RJ, Suib SL, Li Y, Parnas RS (2011) Performance of batch, fed-batch, and continuous A-B-E fermentation with pH-control. Bioresour Technol 102:4241–4250

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Yang XP, Tu MB, Xie R, Adhikari S, Tong ZH (2013) A comparison of three pH control methods for revealing effects of undissociated butyric acid on specific butanol production rate in batch fermentation of Clostridium acetobutylicum. AMB Express 3:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Bellido C, Pinto ML, Coca M, González-Benito G, García-Cubero MT (2014) Acetone-butanol-ethanol (ABE) production by Clostridium beijerinckii from wheat straw hydrolysates: Efficient use of penta and hexa carbohydrates. Bioresour Technol 167:198–205

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Wei D, Liu XG, Yang ST (2013) Butyric acid production from sugarcane bagasse hydrolysate by Clostridium tyrobutyricum immobilized in a fibrous-bed bioreactor. Bioresour Technol 129:553–560

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Sun XM, Ren LJ, Ji XJ, Chen SL, Guo DS, Huang H (2016) Adaptive evolution of Schizochytrium sp. by continuous high oxygen stimulations to enhance docosahexaenoic acid synthesis. Bioresour Technol 211:374–381

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Jiang L, Li S, Hu Y, Xu Q, Huang H (2012) adaptive evolution for fast growth on glucose and the effects on the regulation of glucose transport system in Clostridium tyrobutyricum. Biotechnol Bioeng 109:708–718

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Ra CH, Jeong GT, Kim SK (2017) Hyper-thermal acid hydrolysis and adsorption treatment of red seaweed, Gelidium amansii for butyric acid production with pH control. Bioprocess Biosyst Eng 40:403–411

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Sanchez-Machado DI, Lopez-Cervantes J, Paseiro-Losada P, Lopez-Hernandez J (2004) Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem 85:439–444

    Article  CAS  Google Scholar 

  17. 17.

    Irfan M, Nadeem M, Syed Q (2014) One-factor-at-time (OFAT) optimization of xylanase production from Trichoderma viride-IR05 in solid-state fermentation. J Radiat Res Appl Sci 7:317–326

    Article  Google Scholar 

  18. 18.

    Jeong GT, Ra CH, Hong YK, Kim JK, Kong IS, Kim SK, Park DH (2015) Conversion of red-algae Gracilaria verrucosa to sugars, levulinic acid and 5-hydroxymethylfurfural. Bioprocess Biosyst Eng 38:207–217

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Michel-Savin D, Marchal R, Vandecasteele JP (1990) Control of the selectivity of butyric acid production of Clostridium tyrobutyricum. Appl Microbiol Biotechnol 32:387–392

    Article  CAS  Google Scholar 

  20. 20.

    Baba SI, Tashiro Y, Shinto H, Sonomoto K (2012) Development of high-speed and highly efficient butanol production systems from butyric acid with high density of living cells of Clostridium saccharoperbutylacetonicum. J Biotechnol 157:605–612

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Ibrahim MF, Linggang S, Jenol MA, Yee PL, Abd-Aziz S (2015) Effect of buffering system on acetone-butanol-ethanol fermentation by Clostridium acetobutylicum ATCC 824 using pretreated oil palm empty fruit bunch. BioResources 10:3890–3907

    Article  CAS  Google Scholar 

  22. 22.

    Qureshi N, Li XL, Hughes S, Saha BC, Cotta MA (2006) Butanol production from corn fiber xylan using Clostridium acetobutylicum. Biotechnol Progr 22:673–680

    Article  CAS  Google Scholar 

  23. 23.

    Liu K, Atiyeh HK, Pardo-Planas O, Ramachandriya KD, Wilkins MR, Ezeji TC, Ujor V, Tanner RS (2015) Process development for biological production of butanol from Eastern redcedar. Bioresour Technol 176:88–97

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Huesemann MH, Kuo LJ, Urquhart L, Gill GA, Roesijadi G (2012) Acetone-butanol fermentation of marine macroalgae. Bioresour Technol 108:305–309

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Zhu Y, Yang ST (2004) Effect of pH on metabolic pathway shift in butyric acid fermentation by Clostridium tyrobutyricum. J Biotechnol 110:143–157

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Yu L, Xu MG, Tang IC, Yang ST (2015) Metabolic engineering of Clostridium tyrobutyricum for n-butanol production through co-utilization of glucose and xylose. Biotechnol Bioeng 112:2134–2140

    Article  CAS  PubMed  Google Scholar 

Download references


This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1D1A1A09918683).

Author information



Corresponding author

Correspondence to Sung-Koo Kim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ra, C.H., Sunwoo, I.Y., Nguyen, T.H. et al. Butanol and butyric acid production from Saccharina japonica by Clostridium acetobutylicum and Clostridium tyrobutyricum with adaptive evolution. Bioprocess Biosyst Eng 42, 583–592 (2019). https://doi.org/10.1007/s00449-018-02063-9

Download citation


  • Butanol
  • Butyric acid
  • Clostridium acetobutylicum
  • Clostridium tyrobutyricum
  • Retarding agent
  • Saccharina japonica