Bioprocess and Biosystems Engineering

, Volume 41, Issue 4, pp 543–553 | Cite as

Real-time monitoring of a microbial electrolysis cell using an electrical equivalent circuit model

Research Paper


Efforts in developing microbial electrolysis cells (MECs) resulted in several novel approaches for wastewater treatment and bioelectrosynthesis. Practical implementation of these approaches necessitates the development of an adequate system for real-time (on-line) monitoring and diagnostics of MEC performance. This study describes a simple MEC equivalent electrical circuit (EEC) model and a parameter estimation procedure, which enable such real-time monitoring. The proposed approach involves MEC voltage and current measurements during its operation with periodic power supply connection/disconnection (on/off operation) followed by parameter estimation using either numerical or analytical solution of the model. The proposed monitoring approach is demonstrated using a membraneless MEC with flow-through porous electrodes. Laboratory tests showed that changes in the influent carbon source concentration and composition significantly affect MEC total internal resistance and capacitance estimated by the model. Fast response of these EEC model parameters to changes in operating conditions enables the development of a model-based approach for real-time monitoring and fault detection.


MEC Equivalent circuit model Parameter estimation On-line monitoring 


  1. 1.
    Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrogen Energy 31:1632–1640CrossRefGoogle Scholar
  2. 2.
    Liu H, Grot S, Logan BE (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39(11):4317–4320CrossRefGoogle Scholar
  3. 3.
    Cheng S, Xing D, Logan B (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953–3958CrossRefGoogle Scholar
  4. 4.
    Clauwaert P, Verstraete W (2008) Methanogenesis in membraneless microbial electrolysis cells. Appl Microbiol Biotechnol 82:829–836CrossRefGoogle Scholar
  5. 5.
    Gil-Carrera L, Escapa A, Moreno R, Morán A (2013) Reduced energy consumption during low strength domestic wastewater treatment in a semi-pilot tubular microbial electrolysis cell. J Environ Manag 122:1–7CrossRefGoogle Scholar
  6. 6.
    Wagner RC, Regan JM, Oh SE, Zuo Y, Logan BE (2009) Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Wat Res 43:1480–1488CrossRefGoogle Scholar
  7. 7.
    Logan B, Call D, Cheng S, Hamelers HVM, Sleutels THJA, Jeremiasse AW, Rozendal RA (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42:8630–8640CrossRefGoogle Scholar
  8. 8.
    Call DF, Merrill MD, Logan B (2009) High surface area stainless steel brushes as cathodes in microbial electrolysis cells. Environ Sci Technol 43:2179–2183CrossRefGoogle Scholar
  9. 9.
    Escapa A, Mateos R, Martinez EJ, Blanes J (2016) Microbial electrolysis cells: an emerging technology for wastewater treatment and energy recovery. From laboratory to pilot plant and beyond renew. Sustain Energy Rev 55:942–956CrossRefGoogle Scholar
  10. 10.
    Gao H, Scherson YD, Wells GF (2014) Towards energy neutral wastewater treatment: methodology and state of the art. Environ Sci 16:1223–1246Google Scholar
  11. 11.
    Manuel M-F, Neburchilov V, Wang H, Guiot SR, Tartakovsky B (2010) Hydrogen production in a microbial electrolysis cell with nickel-based gas diffusion cathodes. Power Sour 195:5514–5519CrossRefGoogle Scholar
  12. 12.
    Tartakovsky B, Manuel MF, Neburchilov V, Wang H, Guiot SR (2008) Biocatalyzed hydrogen production in a continuous flow microbial fuel cell with a gas phase cathode. Power Sour 182:291–297CrossRefGoogle Scholar
  13. 13.
    Hussain A, Manuel MF, Tartakovsky B (2016) A comparison of simultaneous organic carbon and nitrogen removal in microbial fuel cells and microbial electrolysis cells. J Environ Manag 173:23–33CrossRefGoogle Scholar
  14. 14.
    Tartakovsky B, Kleiner Y, Manuel M-F (2017) Bioelectrochemical anaerobic sewage treatment technology for Arctic communities. Environ Sci Pollut Res Int.
  15. 15.
    Liu W, Cai W, Guo Z, Wang L, Yang C, Varrone C, Wang A (2016) Microbial electrolysis contribution to anaerobic digestion of waste activated sludge, leading to accelerated methane production. Renew Energy 91:334–339CrossRefGoogle Scholar
  16. 16.
    Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M (2010) Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour Technol 101:3085–3090CrossRefGoogle Scholar
  17. 17.
    Coronado J, Tartakovsky B, Perrier M (2015) On-line monitoring of microbial fuel cells operated with pulse-width modulated electrical load. Proc Control 35:59–64CrossRefGoogle Scholar
  18. 18.
    Martin E, Savadogo O, Guiot SR, Tartakovsky B (2013) Electrochemical characterization of anodic biofilm development in a microbial fuel cell. Appl Electrochem 43:533–540CrossRefGoogle Scholar
  19. 19.
    Jafary T, Daud WRW, Ghasemi M, Kim BH (2015) Biocathode in microbial electrolysis cell; present status and future prospects Renewable and. Sustain Energy Rev 47:23–33CrossRefGoogle Scholar
  20. 20.
    Jeremiasse AW, Hamelers VM, Buisman CJN (2010) Microbial electrolysis cell with a microbial biocathode. Bioelectrochemistry 78:39–43CrossRefGoogle Scholar
  21. 21.
    Rozendal RA, Jeremiasse AW, Hamelers HVM, Buisman CJN (2008) Hydrogen production with a microbial biocathode. Environ Sci Technol 42:629–634CrossRefGoogle Scholar
  22. 22.
    Hou Y, Zhang R, Luo H, Liu G, Kim Y, Yu S, Zeng J (2015) Microbial electrolysis cell with spiral wound electrode for wastewater treatment and methane production. Process Biochem 50:1103–1109CrossRefGoogle Scholar
  23. 23.
    Villano M, Monaco G, Aulenta F, Majone M (2011) Electrochemically assisted methane production in a biofilm reactor. J Power Sour 196:9467–9472CrossRefGoogle Scholar
  24. 24.
    Merill MD, Logan BE (2009) Electrolyte effects on hydrogen evolution and solution resistance in microbial electrolysis cells. J Power Sour 191:203–208CrossRefGoogle Scholar
  25. 25.
    Yang F, Zhang D, Shimotori T, Wang K-C, Huang Y (2012) Study of transformer-based power management system and its performance optimization for microbial fuel cells. J Power Sour 205:86–92CrossRefGoogle Scholar
  26. 26.
    Pinto RP, Srinivasan B, Guiot SR, Tartakovsky B (2011) The effect of real-time external resistance optimization on microbial fuel cell performance. Wat Res 45:1571–1578CrossRefGoogle Scholar
  27. 27.
    Recio-Garrido D, Perrier M, Tartakovsky B (2016) Combined bioelectrochemical-electrical model of a microbial fuel cell. Bioprocess Biosyst Eng 289:180–190Google Scholar

Copyright information

© Crown 2018

Authors and Affiliations

  1. 1.Département de Génie ChimiqueÉcole Polytechnique MontréalMontrealCanada
  2. 2.National Research Council of CanadaMontrealCanada

Personalised recommendations