Bioprocess and Biosystems Engineering

, Volume 41, Issue 4, pp 501–510 | Cite as

Biodegradation of alkali lignin by a newly isolated Rhodococcus pyridinivorans CCZU-B16

  • Gang-Gang Chong
  • Xiao-Jun Huang
  • Jun-Hua Di
  • Dao-Zhu Xu
  • Yu-Cai He
  • Ya-Nan Pei
  • Ya-Jie Tang
  • Cui-Luan Ma
Research Paper


Based on the Prussian blue spectrophotometric method, one high-throughput screening strategy for screening lignin-degrading microorganisms was built on 24-well plate at room temperature. One high activity of alkali lignin-degrading strain Rhodococcus pyridinivorans CCZU-B16 was isolated from soil. After the optimization of biodegradation, 30.2% of alkali lignin (4 g/L) was degraded under the nitrogen-limited condition (30/1 of C/N ratio; g/g) at 30 °C for 72 h. It was found that syringyl (S) units and guaiacyl (G) in lignin decreased after biodegradation. Moreover, the accumulated lipid in cells had a fatty acid profile rich in C16 and C18 with four major constituent fatty acids including palmitic acid (C16:0; 22.4%), palmitoleic acid (C16:1; 21.1%), stearic acid (C18:0; 16.2%), and oleic acid (C18:1; 23.1%). In conclusion, Rhodococcus pyridinivorans CCZU-B16 showed high potential application in future.

Graphical abstract


Alkali lignin Biodegradation High-throughput screening Lipid Rhodococcus pyridinivorans CCZU-B16. 



This work was financially supported by the Natural Science Foundation of Jiangsu Province (No. BK20141172), the Key Laboratory of Fermentation Engineering (Ministry of Education), and the Green Catalysis and Applied Enzyme Group of Changzhou Vocational Institute of Engineering (No. 111308002216006).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

449_2017_1884_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 22.188 KB)


  1. 1.
    Ben HX, Mu W, Deng YL, Ragauskas AJ (2013) Production of renewable gasoline from aqueous phase hydrogenation of lignin pyrolysis oil. Fuel 103:1148–1153CrossRefGoogle Scholar
  2. 2.
    Wang H, Pan CY, Xu F, Liu LJ, Yao RS (2016) Enhanced saccharification for wheat straw with micro-thermal explosion technology of in situ SO3 reaction. Chem Eng J 286:394–399CrossRefGoogle Scholar
  3. 3.
    Wang H, Tucker M, Ji Y (2013) Recent development in chemical depolymerization of lignin: a review. J Appl Chem 2013Google Scholar
  4. 4.
    Zeng G, Yu H, Huang H, Huang D, Chen Y, Huang G, Li J (2006) Laccase activities of a soil fungus Penicillium simplicissimum in relation to lignin degradation. World J Microbiol Biotechnol 22:317–324CrossRefGoogle Scholar
  5. 5.
    Xie S, Qin X, Cheng Y, Laskar D, Qiao W, Sun S, Reyes L, Wang X, Dai Y, Sattler S, Kao K, Yang B, Zhang X, Yuan JS (2015) Simultaneous conversion of all cell wall components by an oleaginous fungus without chemi-physical pretreatment. Green Chem 17:1657–1667CrossRefGoogle Scholar
  6. 6.
    Zhao C, Xie S, Pu Y, Zhang R, Huang F, Ragauskas AJ, Yuan JS (2016) Synergistic enzymatic and microbial lignin conversion. Green Chem 18:1306–1312CrossRefGoogle Scholar
  7. 7.
    Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crop Prod 33:259–276CrossRefGoogle Scholar
  8. 8.
    Tuomela M, Vikman M, Hatakka A, Itävaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72:169–183CrossRefGoogle Scholar
  9. 9.
    Bug TD, Ahmad M, Hardiman EM, Rahmanpour R (2011) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28:1871–1960CrossRefGoogle Scholar
  10. 10.
    He YC, Li XL, Ben HX, Xue XY, Yang B (2017) Lipid production from dilute alkali corn stover lignin by Rhodococcus strains. ACS Sustain Chem Eng 5:2302–2311CrossRefGoogle Scholar
  11. 11.
    Mathews SL, Grunden AM, Pawlak J (2016) Degradation of lignocellulose and lignin by Paenibacillus glucanolyticus. Int Biodeter Biodegr 110:79–86CrossRefGoogle Scholar
  12. 12.
    Zheng Y, Chai L, Yang Z, Zhang H, Chen Y (2013) Characterization of a newly isolated Bacterium Pandoraea sp. B-6 capable of degrading kraft lignin. J Cent South Univ 20:757–763CrossRefGoogle Scholar
  13. 13.
    Chen HP, Chai LY, Zhu ZH, Zheng Y, Zhang H (2012) Biodegradation of kraft lignin bybacterial strain Commonas sp. B-9 isolated from eroded bamboo slips. J Appl Microb 112:900–906CrossRefGoogle Scholar
  14. 14.
    Elsalam HEA, Bahobail AS (2016) Lignin biodegradation by thermophilic bacterial isolates from Saudi Arabia. Biol Chem Sci 7:1413–1424Google Scholar
  15. 15.
    Suma SK, Dhawaria M, Tripathi D, Raturi V, Adhikari DK, Kanaujia PK (2016) Investigation of lignin biodegradation by Trabulsiella sp. isolated from termite gut. Int Biodeter Biodegr 112:12–17CrossRefGoogle Scholar
  16. 16.
    Sainsbury PD, Hardiman EM, Ahmad OH, Seghezzi N, Eltis LD, Bugg TD (2013) Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1. ACS Chem Biol 8:2151–2156CrossRefGoogle Scholar
  17. 17.
    Wei Z, Zeng G, Huang F, Kosa M, Huang D, Ragauskas AJ (2015) Bioconversion of oxygen-pretreated Kraft lignin to microbial lipid with oleaginous Rhodococcus opacus DSM 1069. Green Chem 17:2784–2789CrossRefGoogle Scholar
  18. 18.
    Zhao C, Xie S, Pu Y, Zhang R, Huang F, Ragauskas AJ, Yuan JS (2016) Synergistic enzymatic and microbial lignin conversion. Green Chem 2016, 18:1306–1312CrossRefGoogle Scholar
  19. 19.
    He YC, Ma CL, Zhang X, Li L, Xu JH, Wu MX (2013) Highly enantioselective oxidation of racemic phenyl-1,2-ethanediol to optically pure (R)-(–)-mandelic acid by a newly isolated Brevibacterium lutescens CCZU12–1. Appl Microbiol Biotechnol 97:7185–7194CrossRefGoogle Scholar
  20. 20.
    He YC, Liu F, Gong L, Di JH, Ding Y, Ma CL, Zhang DP, Tao ZC, Wang C, Yang B (2016) Enzymatic in situ saccharification of chestnut shell with high ionic liquid-tolerant cellulases from Galactomyces sp. CCZU11–1 in a biocompatible ionic liquid-cellulase media. Bioresour Technol 201:133–139CrossRefGoogle Scholar
  21. 21.
    He YC, Ma CL, Xu JH, Zhou L (2011) A high-throughput screening strategy for nitrile-hydrolyzing enzymes based on ferric hydroxamate spectrophotometry. Appl Microb Biotechnol 89:817–823CrossRefGoogle Scholar
  22. 22.
    Joshua C, Simmons BA, Singer SW (2016) Ferricyanide-based analysis of aqueous lignin suspension revealed sequestration of water-soluble lignin moieties. RSC Adv 6:54382–54393CrossRefGoogle Scholar
  23. 23.
    Abd-Elsalam HE, El-Hanafy AA (2009) Lignin biodegradation with ligninolytic bacterial strain and comparison of Bacillus subtilis and Bacillus sp. isolated from Egyptian soil. Am Eurasian J Agric Environ Sci 5:39–44Google Scholar
  24. 24.
    Chang YC, Choi D, Takamizawa K, Kikuchi S (2014) Isolation of Bacillus sp. strains capable of decomposing alkali lignin and their application in combination with lactic acid bacteria for enhancing cellulase performance. Bioresour Technol 152:429–436CrossRefGoogle Scholar
  25. 25.
    Chandra R, Bharagava RN (2013) Bacterial degradation of synthetic and kraft lignin by axenic and mixed culture and their metabolic products. J Environ Biol 34(6):991–999Google Scholar
  26. 26.
    Shi Y, Chai L, Tang C, Yang Z, Zheng Y, Chen Y, Jing Q (2013) Biochemical investigation of kraft lignin degradation by Pandoraea sp. B-6 isolated from bamboo slips. Bioprocess Biosyst Eng 36:1957–1965CrossRefGoogle Scholar
  27. 27.
    Chen Y, Chai L, Tang C, Yang Z, Yu Z, Yan S, Zhang H (2012) Kraft lignin biodegradation by Novosphingobium sp. B-7 and analysis of the degradation process. Bioresour Technol 123:682–685CrossRefGoogle Scholar
  28. 28.
    Kurosawa K, Wewetzer SJ, Sinskey AJ (2013) Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production. Biotechnol Biofuels 6:1CrossRefGoogle Scholar
  29. 29.
    Mousavioun P, Halley PJ, Doherty WOS (2013) Thermophysical properties and rheology of PHB/lignin blends. Ind Crop Prod 50:270–275CrossRefGoogle Scholar
  30. 30.
    Liu Y, Hu T, Wu Z, Zeng G, Huang D, Shen Y, He X, Lai M, He Y (2014) Study on biodegradation process of lignin by FTIR and DSC. Environ Sci Pollut Res 21:14004–14013CrossRefGoogle Scholar
  31. 31.
    Xu G, Wang L, Liu J, Wu J (2013) FTIR and XPS analysis of the changes in bamboo chemical structure decayed by white-rot and brown-rot fungi. Appl Surf Sci 280:799–805CrossRefGoogle Scholar
  32. 32.
    Pamidipati S, Ahmed A (2017) Degradation of lignin in agricultural residues by locally isolated Fungus Neurospora discreta. Appl Biochem Biotechnol 181:1561–1572CrossRefGoogle Scholar
  33. 33.
    Chandra R, Raj A, Purohit HJ, Kapley A (2007) Characterisation and optimisation of three potential aerobic bacterial strains for kraft lignin degradation from pulp paper waste. Chemosphere 67:839–846CrossRefGoogle Scholar
  34. 34.
    He CQ, Krügener S, Hirth T, Rupp S, Zibek S (2011) Co-cultured production of lignin-modifying enzymes with white-rot fungi. Appl Biochem Biotechnol 165:700–718CrossRefGoogle Scholar
  35. 35.
    Zhang L, Xian M, He YC, Li LZ, Yang JM, Yu ST, Xu X (2009) A Bronsted acidic ionic liquid as an efficient and environmental benign catalyst for biodiesel synthesis from free fatty acids and achohols. Bioresour Technol 100:4368–4373CrossRefGoogle Scholar
  36. 36.
    Jin MJ, Slininger PJ, Dien BS, Waghmode S, Moser BR, Orjuela A, da Costa Sousa L, Balan V (2015) Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges. Trends Biotechnol 33:43–54CrossRefGoogle Scholar
  37. 37.
    Li Q, Jiang XL, He YC, Li LZ, Xian M, Yang F (2010) Evaluation of biocompatibile ionic liquid 1-methyl-3-methylimidazolium dimethylphosphite pretreatment of corn cob for improved sacchrification and biodiesel production. Appl Microb Biotechnol 87:117–126CrossRefGoogle Scholar
  38. 38.
    Kosa M, Ragauskas AJ (2013) Lignin to lipid bioconversion by oleaginous Rhodococci. Green Chem 15:2070–2074CrossRefGoogle Scholar
  39. 39.
    Dai Y, Zhang HS, Huan B, He YC (2017) Enhancing the enzymatic saccharification of bamboo shoot shell by sequential biological pretreatment with Galactomyces sp. CCZU11–1 and deep eutectic solvent extraction. Bioprocess Biosyst Eng 40:1427–1436CrossRefGoogle Scholar
  40. 40.
    Li AT, Ngo TPN, Yan JY, Tian KY, Li Z (2012) Whole-cell based solvent-free system for one-pot production of biodiesel from waste grease. Bioresour Technol 114:725–729CrossRefGoogle Scholar
  41. 41.
    Qin LZ, Qian HY, He YC (2017) Microbial lipid production from enzymatic hydrolysate of pecan nutshell pretreated by combined pretreatment. Appl Biochem Biotechnol. Google Scholar
  42. 42.
    Wang F, Jiang Y, Guo W, Niu K, Zhang R, Hou S, Wang M, Yi Y, Zhu C, Jia C, Fang X. Wang F, Jiang Y, Guo W et al (2016) An environmentally friendly and productive process for bioethanol production from potato waste. Biotechnol Biofuels 9:50CrossRefGoogle Scholar
  43. 43.
    Xu J, Wang X, Liu X, Xia J, Zhang T, Xiong P (2016) Enzymatic in situ saccharification of lignocellulosic biomass in ionic liquids using an ionic liquid-tolerant cellulases. Biomass Bioenerg 93:180–186CrossRefGoogle Scholar
  44. 44.
    Hu D, Ju X, Li L, Hu C, Yan L, Wu T, Fu J, Qin M (2016) Improved in situ saccharification of cellulose pretreated by dimethyl sulfoxide/ionic liquid using cellulase from a newly isolated Paenibacillus sp. LLZ1, Bioresour Technol 201:8–14CrossRefGoogle Scholar
  45. 45.
    Xing W, Xu G, Dong J, Han R, Ni Y (2018) Novel dihydrogen-bonding deep eutectic solvents: Pretreatment of rice straw for butanol fermentation featuring enzyme recycling and high solvent yield. Chem Eng J 333:712–718CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Gang-Gang Chong
    • 1
  • Xiao-Jun Huang
    • 1
  • Jun-Hua Di
    • 1
  • Dao-Zhu Xu
    • 1
  • Yu-Cai He
    • 1
    • 2
    • 3
  • Ya-Nan Pei
    • 1
  • Ya-Jie Tang
    • 3
  • Cui-Luan Ma
    • 2
  1. 1.Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life ScienceChangzhou UniversityChangzhouPeople’s Republic of China
  2. 2.Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life SciencesHubei UniversityWuhanPeople’s Republic of China
  3. 3.Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial MicrobiologyHubei University of TechnologyWuhanPeople’s Republic of China

Personalised recommendations