Skip to main content
Log in

Efficient production of lycopene by engineered E. coli strains harboring different types of plasmids

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The lycopene biosynthetic genes crtE, crtB, and crtI from Deinococcus wulumuqiensis R12 were integrated into three different vector backbones—pET28a, pTrc99A, and pUC18—and the resulting recombinant plasmids pET28a-EBI, pTrc99A-EBI, and pUC18-EBI were introduced into different Escherichia coli hosts. The results showed that lycopene production of strain 28BL was lower than that of 99 series strains without IPTG in LB medium. In addition, lycopene production of 99JM with supplementation of 20% (w/v) glycerol was 1.6-fold higher than with supplementation of 6% (w/v) glucose. After optimization of the host strain and culture medium, the yield of microbial lycopene was increased successfully. When recombinant E. coli 99DH was cultivated under exposure to light in 2YT + Gly medium, the highest lycopene production rate was 26.2 mg/L/h at 30 h, and the maximum specific lycopene content was 67 mg/g dry cell (925 mg/L) at 40 h, which represents a 76% increase over the starting point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Di Mascio P, Kaiser S, Sies H (1989) Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys 274:532–538

    Article  Google Scholar 

  2. Kong KW, Khoo HE, Prasad KN, Ismail A, Tan CP, Rajab NF (2010) Revealing the power of the natural red pigment lycopene. Molecules 15:959–987

    Article  CAS  Google Scholar 

  3. Matos HR, Capelozzi VL, Gomes OF, Di Mascio P, Medeiros MH (2001) Lycopene inhibits DNA damage and liver necrosis in rats treated with ferric nitrilotriacetate. Arch Biochem Biophys 396:171–177

    Article  CAS  Google Scholar 

  4. Story EN, Kopec RE, Schwartz SJ, Harris GK (2010) An update on the health effects of tomato lycopene. Annu Rev Food Sci Technol 1:189–210

    Article  CAS  Google Scholar 

  5. Liu XJ, Liu RS, Li HM, Tang YJ (2012) Lycopene production from synthetic medium by Blakeslea trispora NRRL 2895 (+) and 2896 (−) in a stirred-tank fermenter. Bioprocess Biosyst Eng 35:739–749

    Article  CAS  Google Scholar 

  6. Hundle B, Alberti M, Nievelstein V, Beyer P, Kleinig H, Armstrong G, Burke D, Hearst J (1994) Functional assignment of Erwinia herbicola Eho10 carotenoid genes expressed in Escherichia coli. Mol Gen Genet MGG 245:406–416

    Article  CAS  Google Scholar 

  7. Verwaal R, Wang J, Meijnen J-P, Visser H, Sandmann G, van den Berg JA, van Ooyen AJ (2007) High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 73:4342–4350

    Article  CAS  Google Scholar 

  8. Qiang W, Ling-ran F, Luo W, Han-guang L, Lin W, Ya Z, Xiao-bin Y (2014) Mutation breeding of lycopene-producing strain Blakeslea trispora by a novel atmospheric and room temperature plasma (ARTP). Appl Biochem Biotechnol 174:452–460

    Article  CAS  Google Scholar 

  9. Emadi H, Amaninejad P, Emtiazjoo M, Sahhafi HH (2010) Effects of Dunaliella microalgae (Dunaliellasalina) on different levels of complement C3, C4 and antioxidant capacity in rainbow trout (Oncorhynchusmykiss). Adv Environ Biol 4:456–464

    CAS  Google Scholar 

  10. Wang J-F, Liu X-J, Liu R-S, Li H-M, Tang Y-J (2012) Optimization of the mated fermentation process for the production of lycopene by Blakeslea trispora NRRL 2895 (+) and NRRL 2896 (−). Bioprocess Biosyst Eng 35:553–564

    Article  CAS  Google Scholar 

  11. Liu Q, Zhu L, Wang Y, Li D, Wan D, Tang Y (2009) Advance on the production of lycopene by microbial fermentation. Food Ferment Ind 35:157–161

    Google Scholar 

  12. Moise AR, Al-Babili S, Wurtzel ET (2014) Mechanistic aspects of carotenoid biosynthesis. Chem Rev 114:164–193

    Article  CAS  Google Scholar 

  13. Zhao J, Li Q, Sun T, Zhu X, Xu H, Tang J, Zhang X, Ma Y (2013) Engineering central metabolic modules of Escherichia coli for improving beta-carotene production. Metab Eng 17:42–50

    Article  CAS  Google Scholar 

  14. Ramos KRM, Valdehuesa KNG, Liu H, Nisola GM, Lee W-K, Chung W-J (2014) Combining De Ley–Doudoroff and methylerythritol phosphate pathways for enhanced isoprene biosynthesis from d-galactose. Bioprocess Biosyst Eng 37:2505–2513

    Article  CAS  Google Scholar 

  15. Das A, Yoon S-H, Lee S-H, Kim J-Y, Oh D-K, Kim S-W (2007) An update on microbial carotenoid production: application of recent metabolic engineering tools. Appl Microbiol Biotechnol 77:505

    Article  CAS  Google Scholar 

  16. Sun T, Miao L, Li Q, Dai G, Lu F, Liu T, Zhang X, Ma Y (2014) Production of lycopene by metabolically-engineered Escherichia coli. Biotechnol Lett 36:1515–1522

    Article  CAS  Google Scholar 

  17. Yoon SH, Lee YM, Kim JE, Lee SH, Lee JH, Kim JY, Jung KH, Shin YC, Keasling JD, Kim SW (2006) Enhanced lycopene production in Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate. Biotechnol Bioeng 94:1025–1032

    Article  CAS  Google Scholar 

  18. Kim YS, Lee JH, Kim NH, Yeom SJ, Kim SW, Oh DK (2011) Increase of lycopene production by supplementing auxiliary carbon sources in metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 90:489–497

    Article  CAS  Google Scholar 

  19. Zhang T-C, Li W, Luo X-G, Feng C-X, Zhang M-H, Du W, Ma D-Y (2015) Increase of the lycopene production in the recombinant strains of Escherichia coli by supplementing with fructose. Adv Appl Biotechnol 332, pp 29–35

    Google Scholar 

  20. Zhu F, Lu L, Fu S, Zhong X, Hu M, Deng Z, Liu T (2015) Targeted engineering and scale up of lycopene overproduction in Escherichia coli. Process Biochem 50:341–346

    Article  Google Scholar 

  21. Chen Y-Y, Shen H-J, Cui Y-Y, Chen S-G, Weng Z-M, Zhao M, Liu J-Z (2013) Chromosomal evolution of Escherichia coli for the efficient production of lycopene. BMC Biotechnol 13:1

    Article  Google Scholar 

  22. Yang J, Guo L (2014) Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways. Microb Cell Fact 13:160

    Article  Google Scholar 

  23. Yoon SH, Kim JE, Lee SH, Park HM, Choi MS, Kim JY, Lee SH, Shin YC, Keasling JD, Kim SW (2007) Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis. Appl Microbiol Biotechnol 74:131–139

    Article  CAS  Google Scholar 

  24. Nishizaki T, Tsuge K, Itaya M, Doi N, Yanagawa H (2007) Metabolic engineering of carotenoid biosynthesis in Escherichia coli by ordered gene assembly in Bacillus subtilis. Appl Environ Microbiol 73:1355–1361

    Article  CAS  Google Scholar 

  25. Lim HN, Lee Y, Hussein R (2011) Fundamental relationship between operon organization and gene expression. In: Proceedings of the National Academy of Sciences vol 108, pp 10626–10631

  26. Zhang S, Zhao X, Tao Y, Lou C (2015) A novel approach for metabolic pathway optimization: Oligo-linker mediated assembly (OLMA) method. J Biol Eng 9:23

    Article  Google Scholar 

  27. Wang Z, Jin L, Yuan Z, Węgrzyn G, Węgrzyn A (2009) Classification of plasmid vectors using replication origin, selection marker and promoter as criteria. Plasmid 61:47–51

    Article  CAS  Google Scholar 

  28. Friehs K (2004) Plasmid copy number and plasmid stability. New trends and developments in biochemical engineering. Springer, Berlin, Heidelberg

    Google Scholar 

  29. Nacken V, Achstetter T, Degryse E (1996) Probing the limits of expression levels by varying promoter strength and plasmid copy number in Saccharomyces cerevisiae. Gene 175:253–260

    Article  CAS  Google Scholar 

  30. Kim SW, Kim JB, Ryu JM, Jung JK, Kim JH (2009) High-level production of lycopene in metabolically engineered E. coli. Process Biochem 44:899–905

    Article  CAS  Google Scholar 

  31. Cranenburgh RM, Lewis KS, Hanak JA (2004) Effect of plasmid copy number and lac operator sequence on antibiotic-free plasmid selection by operator-repressor titration in Escherichia coli. J Mol Microbiol Biotechnol 7:197–203

    Article  CAS  Google Scholar 

  32. Chakravartty V, Cronan JE (2015) A series of medium and high copy number arabinose-inducible Escherichia coli expression vectors compatible with pBR322 and pACYC184. Plasmid 81:21–26

    Article  CAS  Google Scholar 

  33. Jin W, Xu X, Jiang L, Zhang Z, Li S, Huang H (2015) Putative carotenoid genes expressed under the regulation of Shine-Dalgarno regions in Escherichia coli for efficient lycopene production. Biotechnol Lett 37:2303–2310

    Article  CAS  Google Scholar 

  34. Tao L, Jackson RE, Rouvière PE, Cheng Q (2005) Isolation of chromosomal mutations that affect carotenoid production in Escherichia coli: mutations alter copy number of ColE1-type plasmids. FEMS Microbiol Lett 243:227–233

    Article  CAS  Google Scholar 

  35. Ryan W, Parulekar SJ (1991) Recombinant protein synthesis and plasmid instability in continuous cultures of Escherichia coli JM103 harboring a high copy number plasmid. Biotechnol Bioeng 37:415–429

    Article  CAS  Google Scholar 

  36. Pushnova EA, Geier M, Zhu YS (2000) An easy and accurate agarose gel assay for quantitation of bacterial plasmid copy numbers. Anal Biochem 284:70–76

    Article  CAS  Google Scholar 

  37. Silva F, Queiroz JA, Domingues FC (2012) Evaluating metabolic stress and plasmid stability in plasmid DNA production by Escherichia coli. Biotechnol Adv 30:691–708

    Article  CAS  Google Scholar 

  38. Kramer MG (2016) Determination of plasmid segregational stability in a growing bacterial population. Bact Ther Cancer Methods Protoc 1409:125–133

    Article  Google Scholar 

  39. Karim AS, Curran KA, Alper HS (2013) Characterization of plasmid burden and copy number in Saccharomyces cerevisiae for optimization of metabolic engineering applications. FEMS Yeast Res 13:107–116

    Article  CAS  Google Scholar 

  40. Gruber DF, Pieribone VA, Porton B, Kao H-T (2008) Strict regulation of gene expression from a high-copy plasmid utilizing a dual vector system. Protein Expr Purif 60:53–57

    Article  CAS  Google Scholar 

  41. Thakker C, Zhu J, San K-Y, Bennett G (2011) Heterologous pyc gene expression under various natural and engineered promoters in Escherichia coli for improved succinate production. J Biotechnol 155:236–243

    Article  CAS  Google Scholar 

  42. Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotechnol 21:796–802

    Article  CAS  Google Scholar 

  43. Jones KL, Kim S-W, Keasling J (2000) Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metab Eng 2:328–338

    Article  CAS  Google Scholar 

  44. Wang Z, Xiang L, Shao J, Węgrzyn A, Węgrzyn G (2006) Effects of the presence of ColE1 plasmid DNA in Escherichia coli on the host cell metabolism. Microb Cell Fact 5:34

    Article  Google Scholar 

  45. Yoon S-H, Lee S-H, Das A, Ryu H-K, Jang H-J, Kim J-Y, Oh D-K, Keasling JD, Kim S-W (2009) Combinatorial expression of bacterial whole mevalonate pathway for the production of β-carotene in E. coli. J Biotechnol 140:218–226

    Article  CAS  Google Scholar 

  46. Lee PC, Mijts BN, Schmidt-Dannert C (2004) Investigation of factors influencing production of the monocyclic carotenoid torulene in metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 65:538–546

    CAS  Google Scholar 

  47. Shi J, Dai Y, Kakuda Y, Mittal G, Xue SJ (2008) Effect of heating and exposure to light on the stability of lycopene in tomato puree. Food Control 19:514–520

    Article  CAS  Google Scholar 

  48. Giannakis S, Rtimi S, Darakas E, Escalas-Cañellas A, Pulgarin C (2015) Light wavelength-dependent E. coli survival changes after simulated solar disinfection of secondary effluent. Photochem Photobiol Sci 14:2238–2250

    Article  CAS  Google Scholar 

  49. Murmu J, Chinthapalli B, Raghavendra AS (2003) Light activation of NADP malic enzyme in leaves of maize: marginal increase in activity, but marked change in regulatory properties of enzyme. J Plant Physiol 160:51–56

    Article  CAS  Google Scholar 

  50. Ruiz-Hidalgo M, Benito E, Sandmann G, Eslava A (1997) The phytoene dehydrogenase gene of Phycomyces: regulation of its expression by blue light and vitamin A. Mol Gen Genet MGG 253:734–744

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Joint Fund of the National Natural Science Foundation of China (U1603112), the National Natural Science Foundation of China for Young Scholars (21406111), and the Program for Innovative Research Team in Universities of Jiangsu Province (2015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling Jiang or He Huang.

Ethics declarations

Research involving human participants and/or animals

This study does not contain any experiments involving human subjects or experimental animals.

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Xu, X., Xu, Q. et al. Efficient production of lycopene by engineered E. coli strains harboring different types of plasmids. Bioprocess Biosyst Eng 41, 489–499 (2018). https://doi.org/10.1007/s00449-017-1883-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1883-y

Keywords

Navigation