Bioprocess and Biosystems Engineering

, Volume 41, Issue 4, pp 479–487 | Cite as

Development of bisphenol A-removing recombinant Escherichia coli by monomeric and dimeric surface display of bisphenol A-binding peptide

  • Murali kannan Maruthamuthu
  • Jiyeon Hong
  • Kulandaisamy Arulsamy
  • Sivachandiran Somasundaram
  • SoonHo Hong
  • Woo-Seok Choe
  • Ik-Keun Yoo
Research Paper


Peptide-displaying Escherichia coli cells were investigated for use in adsorptive removal of bisphenol A (BPA) both in Luria–Bertani medium including BPA or ATM thermal paper eluted wastewater. Two recombinant strains were constructed with monomeric and dimeric repeats of the 7-mer BPA-binding peptide (KSLENSY), respectively. Greater than threefold increased adsorption of BPA [230.4 µmol BPA per g dry cell weight (DCW)] was found in dimeric peptide-displaying cells compared to monomeric strains (63.4 µmol per g DCW) in 15 ppm BPA solution. The selective removal of BPA from a mixture of BPA analogs (bisphenol F and bisphenol S) was verified in both monomeric and dimeric peptide-displaying cells. The binding chemistry of BPA with the peptide was assumed, based on molecular docking analysis, to be the interaction of BPA with serine and asparagine residues within the 7-mer peptide sequence. The peptide-displaying cells also functioned efficiently in thermal paper eluted wastewater containing 14.5 ppm BPA.


Bisphenol A Peptide surface display Adsorption ATM thermal paper E. coli 



This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2013R1A1A2004799).


  1. 1.
    Michałowicz J (2014) Bisphenol A—sources, toxicity and biotransformation. Environ Toxicol Pharmacol 37:738–758CrossRefGoogle Scholar
  2. 2.
    Rajasärkkä J, Koponen J, Airaksinen R, Kiviranta H, Virta M (2014) Monitoring bisphenol A and estrogenic chemicals in thermal paper with yeast-based bioreporter assay. Anal Bioanal Chem 406:5695–5702CrossRefGoogle Scholar
  3. 3.
    Liao C, Kannan K (2011) Widespread occurrence of bisphenol A in paper and paper products: implications for human exposure. Environ Sci Technol 45:9372–9379CrossRefGoogle Scholar
  4. 4.
    Geens T, Goeyens L, Kannan K, Neels H, Covaci A (2012) Levels of bisphenol-A in thermal paper receipts from Belgium and estimation of human exposure. Sci Total Environ 435–436:30–33CrossRefGoogle Scholar
  5. 5.
    Porras SP, Heinälä M, Santonen T (2014) Bisphenol A exposure via thermal paper receipts. Toxicol Lett 230:413–420CrossRefGoogle Scholar
  6. 6.
    Mendum T, Stoler E, VanBenschoten H, Warner JC (2010) Concentration of bisphenol A in thermal paper. Green Chem Lett Rev 4:81–86CrossRefGoogle Scholar
  7. 7.
    Bae W, Wu CH, Kostal J, Mulchandani A, Chen W (2003) Enhanced mercury biosorption by bacterial cells with surface-displayed MerR. Appl Environ Microbio 69:3176–3180CrossRefGoogle Scholar
  8. 8.
    Li P-S, Tao H-C (2013) Cell surface engineering of microorganisms towards adsorption of heavy metals. Crit Rev Microbio 41:140–149CrossRefGoogle Scholar
  9. 9.
    Cruz N, Le Borgne S, Herna´ndez-Cha´vez G, Gosset G, Valle F, Bolivar F (2000) Engineering the Escherichia coli outer membrane protein OmpC for metal bioadsorption. Biotechnol Lett 22:623–629CrossRefGoogle Scholar
  10. 10.
    Maruthamuthu M, Nadarajan S, Ganesh I, Ravikumar S, Yun H, Yoo I-k, Hong S (2015) Construction of a high efficiency copper adsorption bacterial system via peptide display and its application on copper dye polluted wastewater. Bioproc Biosyst Eng 38:2077–2084CrossRefGoogle Scholar
  11. 11.
    Ravikumar S, Ganesh I, Yoo I-K, Hong SH (2012) Construction of a bacterial biosensor for zinc and copper and its application to the development of multifunctional heavy metal adsorption bacteria. Process Biochem 47:758–765CrossRefGoogle Scholar
  12. 12.
    Maruthamuthu M, Ganesh I, Ravikumar S, Hong S (2015) Evaluation of zraP gene expression characteristics and construction of a lead (Pb) sensing and removal system in a recombinant Escherichia coli. Biotechnol Lett 37:659–664CrossRefGoogle Scholar
  13. 13.
    Ravikumar S, Yoo I-K, Lee SY, Hong SH (2011) A study on the dynamics of the zraP gene expression profile and its application to the construction of zinc adsorption bacteria. Bioproc Biosyst Eng 34:1119–1126CrossRefGoogle Scholar
  14. 14.
    Yoo I-K, Choe WS (2013) Screening of peptide sequences with affinity to bisphenol A by biopanning. Korean J Microbiol 49:211–214CrossRefGoogle Scholar
  15. 15.
    Baslé A, Rummel G, Storici P, Rosenbusch JP, Schirmer T (2006) Crystal structure of osmoporin OmpC from E. coli at 2.0 Å. J Mol Biol 362:933–942CrossRefGoogle Scholar
  16. 16.
    Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen M-Y, Pieper U, Sali A (2001) Comparative protein structure modeling using MODELLER. Current protocols in protein science. Wiley, New JerseyGoogle Scholar
  17. 17.
    Laskowsky RAMM., Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereo chemical quality of protein structures. J Appl Crystallogr 26:283–291CrossRefGoogle Scholar
  18. 18.
    Ramachandran GNRC., Sasisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95–99CrossRefGoogle Scholar
  19. 19.
    Bhattacharya D, Cheng J (2013) 3Drefine: consistent protein structure refinement by optimizing hydrogen bonding network and atomic-level energy minimization. Proteins 81:119–131CrossRefGoogle Scholar
  20. 20.
    Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407-W410CrossRefGoogle Scholar
  21. 21.
    Patra SM, Baştuǧ T, Kuyucak S (2007) Binding of organic cations to gramicidin A channel studied with autodock and molecular dynamics simulations. J Phys Chem B 111:11303–11311CrossRefGoogle Scholar
  22. 22.
    Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M (2015) PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Res 43:W443-W447CrossRefGoogle Scholar
  23. 23.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nat 227:680–685CrossRefGoogle Scholar
  24. 24.
    Han W, Luo L, Zhang S (2012) Adsorption of bisphenol A on lignin: effects of solution chemistry. Int J Environ Sci Technol 9:543–548CrossRefGoogle Scholar
  25. 25.
    Lazim ZM, Hadibarata T, Puteh MH, Yusop Z (2015) Adsorption characteristics of bisphenol A onto low-cost modified phyto-waste material in aqueous solution. Water Air Soil Poll 226:34CrossRefGoogle Scholar
  26. 26.
    Endo Y, Kimura N, Ikeda I, Fujimoto K, Kimoto H (2007) Adsorption of bisphenol A by lactic acid bacteria, Lactococcus, strains. Appl Microbiol Biotechnol 74:202–207CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Murali kannan Maruthamuthu
    • 1
  • Jiyeon Hong
    • 1
  • Kulandaisamy Arulsamy
    • 2
  • Sivachandiran Somasundaram
    • 1
  • SoonHo Hong
    • 1
  • Woo-Seok Choe
    • 3
  • Ik-Keun Yoo
    • 1
  1. 1.School of Chemical EngineeringUniversity of UlsanUlsanRepublic of Korea
  2. 2.Department of BiotechnologyIndian Institute of Technology MadrasChennaiIndia
  3. 3.School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations