Skip to main content

Measuring the adhesion limit of fibronectin for fibroblasts with a narrow-gap rotational rheometer

Abstract

We study the adhesion limit of 3T6 fibroblasts, cultured in Dulbecco’s modified Eagle’s medium with 10% fetal bovine serum at 37 °C and 5% CO2, with a narrow-gap rotational rheometer in the parallel-disk configuration. Reducing the uncertainty in gap width to about 1 µm allows studying the cells at narrow gaps, which enables to study the critical shear stress of the cells in low-viscous media. The adhesion limit on fibronectin-coated glass plates is determined as a function of concentration and adhesion time. We found that cells in groups have a tendency to detach at slightly higher shear stresses than single cells. Moreover, 60 min after the settling phase are enough for the cells to adhere to the coated plate at maximum strength. We show that the setup may also be used for cells that are not adhered from suspension, but are grown directly on the substrate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ahmad Khalili A, Ahmad MR, Tseng F-G (2015) A Review of cell adhesion studies for biomedical and biological applications. Int J Mol Sci 16(8):18149–18184. https://doi.org/10.3390/ijms160818149

    Article  Google Scholar 

  2. Lee GYH, Lim CT (2007) Biomechanics approaches to studying human diseases. Trends Biotechnol 25(3):111–118. https://doi.org/10.1016/j.tibtech.2007.01.005

    CAS  Article  Google Scholar 

  3. Christ KV, Williamson KB, Masters KS, Turner KT (2010) Measurement of single-cell adhesion strength using a microfluidic assay. Biomed Microdevice 12(3):443–455. https://doi.org/10.1007/s10544-010-9401-x

    Article  Google Scholar 

  4. Palmer CP, Mycielska ME, Burcu H, Osman K, Collins T, Beckerman R, Perrett R, Johnson H, Aydar E, Djamgoz MBA (2008) Single cell adhesion measuring apparatus (SCAMA): application to cancer cell lines of different metastatic potential and voltage-gated Na + channel expression. Eur Biophys J 37(4):359–368. https://doi.org/10.1007/s00249-007-0219-2

    CAS  Article  Google Scholar 

  5. Christ K, Turner K (2011) Methods to measure the strength of cell adhesion to substrates. Surface and interfacial aspects of cell adhesion. CRC Press, pp 193–224

  6. Castelain M, Rouxhet PG, Pignon F, Magnin A, Piau J-M (2012) Single-cell adhesion probed in-situ using optical tweezers: a case study with Saccharomyces cerevisiae. J Appl Phys 111(11):114701. https://doi.org/10.1063/1.4723566

    Article  Google Scholar 

  7. Channavajjala LS, Eidsath A, Saxinger WC (1997) A simple method for measurement of cell-substrate attachment forces: application to HIV-1 Tat. J Cell Sci 110(2):249

    CAS  Google Scholar 

  8. Reutelingsperger CPM, Van Gool RGJ, Heijnen V, Frederik P, Lindhout T (1994) The rotating disc as a device to study the adhesive properties of endothelial cells under differential shear stresses. J Mater Sci Mater Med 5(6):361–367. https://doi.org/10.1007/BF00058964

    Article  Google Scholar 

  9. Goldstein AS, DiMilla PA (1997) Application of fluid mechanic and kinetic models to characterize mammalian cell detachment in a radial-flow chamber. Biotechnol Bioeng 55(4):616–629. https://doi.org/10.1002/(SICI)1097-0290(19970820)55:4<616::AID-BIT4>3.0.CO;2-K

    CAS  Article  Google Scholar 

  10. Visser Claas W, Gielen Marise V, Hao Z, Le Gac S, Lohse D, Sun C (2015) Quantifying cell adhesion through impingement of a controlled microjet. Biophys J 108(1):23–31. https://doi.org/10.1016/j.bpj.2014.10.071

    Article  Google Scholar 

  11. Lu H, Koo LY, Wang WM, Lauffenburger DA, Griffith LG, Jensen KF (2004) Microfluidic shear devices for quantitative analysis of cell adhesion. Anal Chem 76(18):5257–5264. https://doi.org/10.1021/ac049837t

    CAS  Article  Google Scholar 

  12. Dakhil H, Wierschem A (2014) Measuring low viscosities and high shear rates with a rotational rheometer in a thin-gap parallel-disk configuration. Appl Rheol 24(6):63795–63801

    Google Scholar 

  13. Ewoldt RH, Johnston MT, Caretta LM (2015) Experimental challenges of shear rheology: how to avoid bad data. In: Spagnolie SE (ed) Complex fluids in biological systems: experiment, theory, and computation. Springer, New York, pp 207–241

  14. Dakhil H, Gilbert DF, Malhotra D, Limmer A, Engelhardt H, Amtmann A, Hansmann J, Hübner H, Buchholz R, Friedrich O, Wierschem A (2016) Measuring average rheological quantities of cell monolayers in the linear viscoelastic regime. Rheol Acta 55(7):527–536. https://doi.org/10.1007/s00397-016-0936-5

    CAS  Article  Google Scholar 

  15. Furukawa KS, Ushida T, Nagase T, Nakamigawa H, Noguchi T, Tamaki T, Tanaka J, Tateishi T (2001) Quantitative analysis of cell detachment by shear stress. Mater Sci Eng: C 17(1–2):55–58. https://doi.org/10.1016/S0928-4931(01)00336-8

    Article  Google Scholar 

  16. Titze IR, Klemuk SA, Lu X (2012) Adhesion of a monolayer of fibroblast cells to fibronectin under sonic vibrations in a bioreactor. Ann Otol Rhinol Laryngol 121(6):364–374

    Article  Google Scholar 

  17. Pipe CJ, Majmudar TS, McKinley GH (2008) High shear rate viscometry. Rheol Acta 47(5–6):621–642

    CAS  Article  Google Scholar 

  18. Dakhil H, Gilbert DF, Malhotra D, Limmer A, Engelhardt H, Amtmann A, Hansmann J, Hübner H, Buchholz R, Friedrich O, Wierschem A (2016) Measuring average rheological quantities of cell monolayers in the linear viscoelastic regime. Rheol Acta:1–10. https://doi.org/10.1007/s00397-016-0936-5

  19. Kokkinos D, Dakhil H, Wierschem A, Briesen H, Braun A (2016) Deformation and rupture of Dunaliella salina at high shear rates without the use of thickeners. Biorheology 53(1):1–11. https://doi.org/10.3233/BIR-15057

    Article  Google Scholar 

  20. Todaro GJ, Green H (1963) Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol 17(2):299–313

    CAS  Article  Google Scholar 

  21. Freshney R (1993) Culture of animal cells. A manual of basic techniques, 3rd edn. Wiley-Liss, New York

    Google Scholar 

  22. Goldstein AS, DiMilla PA (2003) Examination of membrane rupture as a mechanism for mammalian cell detachment from fibronectin-coated biomaterials. J Biomed Mater Res Part A 67A(2):658–666. https://doi.org/10.1002/jbm.a.10125

    CAS  Article  Google Scholar 

  23. Agudo JR, Dasilva S, Wierschem A (2014) How do neighbors affect incipient particle motion in laminar shear flow?. Phys Fluids 26(5):053303. https://doi.org/10.1063/1.4874604

    Article  Google Scholar 

  24. Agudo JR, Wierschem A (2012) Incipient motion of a single particle on regular substrates in laminar shear flow. Phys Fluids 24(9):093302. https://doi.org/10.1063/1.4753941

    Article  Google Scholar 

  25. Engler AJ, Chan M, Boettiger D, Schwarzbauer JE (2009) A novel mode of cell detachment from fibrillar fibronectin matrix under shear. J Cell Sci 122(10):1647–1653. https://doi.org/10.1242/jcs.040824

    CAS  Article  Google Scholar 

  26. Peel MM, DiMilla PA (1999) Effect of cell–cell interactions on the observable strength of adhesion of sheets of cells. Ann Biomed Eng 27(2):236–246. https://doi.org/10.1114/1.178

    CAS  Article  Google Scholar 

  27. Akiyama SK, Yamada KM (1985) The interaction of plasma fibronectin with fibroblastic cells in suspension. J Biol Chem 260(7):4492–4500

    CAS  Google Scholar 

  28. Culp LA, Sukenik CN (1994) Glass and metal surfaces derivatized with self-assembled monolayers: Cell type-specific modulation of fibronectin adhesion functions. J Tissue Culture Methods 16(3):161–172. https://doi.org/10.1007/BF01540644

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Wierschem.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dakhil, H., Do, H., Hübner, H. et al. Measuring the adhesion limit of fibronectin for fibroblasts with a narrow-gap rotational rheometer. Bioprocess Biosyst Eng 41, 353–358 (2018). https://doi.org/10.1007/s00449-017-1868-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1868-x

Keywords

  • Cell adhesion
  • Critical shear stress
  • Narrow-gap rheometry
  • Parallel-disk configuration
  • Fibronectin concentration