Skip to main content
Log in

Studies on the scale-up of biomass production with Scenedesmus spp. in flat-plate gas-lift photobioreactors

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Microalgae are flagged as next-generation biomass feedstock for sustainable chemicals and fuels, because they actively metabolize the climate gas CO2, do not impact food production, and are not associated with land-use change. Scaling microalgae cultivation processes from lab to pilot scale is key to assessing their economic and ecologic viability. In this work, process performances of two different Scenedesmus species were studied using a 300 L flat-plate gas-lift photobioreactor system (14 m2 photosynthetically active area) equipped with a customized, broad-spectrum LED illumination system. Scaling up of batch processes from laboratory scale (1.8 L, 0.09 m2) to the geometrically equivalent pilot scale resulted in reduced volumetric biomass productivities of up to 11% and reduced areal biomass productivities of up to 7.5% at the pilot scale. Since biofilm formation was solely detected at pilot scale, biofilm most likely impaired scalability. Nevertheless, repeated addition of nutrients (BG-11) at pilot scale resulted in a 13.5 gCDW L−1 biomass concentration within a 15 day process time with S. obtusiusculus at constant incident-photon flux densities of 1400 µmol photons m−2 s−1 and more than 19.5 gCDW L1 after 30 days with Scenedesmus ovalternus SAG 52.80 at constant incident-photon flux densities of 750 µmol photons m−2 s−1. This resulted in areal biomass productivities of 14 gCDW m−2 day−1 (S. ovalternus) and 19 gCDW m−2 day−1 (S. obtusiusculus), respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. O’Grady J, Morgan JA (2011) Heterotrophic growth and lipid production of Chlorella protothecoides on glycerol. Bioprocess Biosyst Eng 34:121–125

    Article  Google Scholar 

  2. Kim S-K (2015) Handbook of marine microalgae. Academic, Amsterdam, pp 1–9

    Google Scholar 

  3. Shastri AA, Morgan JA (2005) Flux balance analysis of photoautotrophic metabolism. Biotechnol Prog 21:1617–1626

    Article  CAS  Google Scholar 

  4. Sánchez A, Gutierrez SJ (2008) Photochemistry research progress. Nova Science Publishers, New York, p 566

    Google Scholar 

  5. Orosa M, Torres E, Fidalgo P, Abalde J (2000) Production and analysis of secondary carotenoids in green algae. J Appl Phycol 12:553–556

    Article  CAS  Google Scholar 

  6. Koller AP, Lowe H, Schmid V, Mundt S, Weuster-Botz D (2016) Model-supported phototrophic growth studies with Scenedesmus obtusiusculus in a flat-plate photobioreactor. Biotechnol Bioeng 114:308–320

    Article  Google Scholar 

  7. Koller AP, Wolf L, Weuster-Botz D (2017) Reaction engineering analysis of Scenedesmus ovalternus in a flat-plate gas-lift photobioreactor. Bioresour Technol 225:165–174

    Article  CAS  Google Scholar 

  8. Sarat Chandra T, Aditi S, Maneesh Kumar M, Mukherji S, Modak J, Chauhan VS, Sarada R, Mudliar SN (2017) Growth and biochemical characteristics of an indigenous freshwater microalga, Scenedesmus obtusus, cultivated in an airlift photobioreactor: effect of reactor hydrodynamics, light intensity, and photoperiod. Bioprocess Biosyst Eng 40:1057–1068

    Article  CAS  Google Scholar 

  9. Lorenzen J, Igl N, Tippelt M, Stege A, Qoura F, Sohling U, Brück T (2017) Extraction of microalgae derived lipids with supercritical carbon dioxide in an industrial relevant pilot plant. Bioprocess Biosyst Eng 40:911–918

    Article  CAS  Google Scholar 

  10. Matsunaga T, Matsumoto M, Maeda Y, Sugiyama H, Sato R, Tanaka T (2009) Characterization of marine microalga, Scenedesmus spp. strain JPCC GA0024 toward biofuel production. Biotechnol lett 31:1367–1372

    Article  CAS  Google Scholar 

  11. Qin S, Liu G-X, Hu Z-Y (2008) The accumulation and metabolism of astaxanthin in Scenedesmus obliquus (Chlorophyceae). Process Biochem 43:795–802

    Article  CAS  Google Scholar 

  12. Gupta AB, Shrivastava GC (1965) On antibiotic properties of some fresh water algae. Hydrobiologia 25:285–288

    Article  Google Scholar 

  13. Ördög V, Stirk WA, Lenobel R, Bancířová M, Strnad M, van Staden J, Szigeti J, Németh L (2004) Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. J Appl Phycol 16:309–314

    Article  Google Scholar 

  14. Soeder CJ (1971) Mikroalgenkultur im technischen Maßstab. Biol unserer Zeit 1:133–142

    Article  Google Scholar 

  15. Soeder CJ (1980) Massive cultivation of microalgae: results and prospects. Hydrobiologia 72:197–209

    Article  CAS  Google Scholar 

  16. Chini Zittelli G, Pastorelli R, Tredici (2000) A modular flat panel photobioreactor (MFPP) for indoor mass cultivation of Nannochloropsis sp under artificial illumination. J Appl Phycol 12:521–526

    Article  Google Scholar 

  17. Chini Zittelli G, Rodolfi L, Tredici MR (2004) Industrial production of microalgal cell-mass and secondary products—species of high potential: mass cultivation of Nannochloropsis in closed systems. In: Richmond A, Hu Q (eds) Handbook of microlgl culture, vol 16: Blackwell, Oxford Chap, pp 298–303

    Google Scholar 

  18. Janssen M, Tramper J, Mur LR, Wijffels RH (2003) Enclosed outdoor photobioreactors: Light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng 81:193–210

    Article  CAS  Google Scholar 

  19. Tredici MR (2004) In: Richmond A, Hu Q (eds) Massproduction of microalgae: Photobioreactors, 9. Handbook of microlgl culture. Blackwell, Oxford Chap, pp 178–215

    Google Scholar 

  20. Apel AC, Weuster-Botz D (2015) Engineering solutions for open microalgae mass cultivation and realistic indoor simulation of outdoor environments. Bioprocess Biosyst Eng 38:995–1008

    Article  CAS  Google Scholar 

  21. Tredici MR, Chini Zittelli G, Rodolfi L (2010) In: Flickinger M (ed) Photobioreactors, encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley, Hoboken, pp 1–15

    Google Scholar 

  22. Guo X, Yao L, Huang Q (2015) Aeration and mass transfer optimization in a rectangular airlift loop photobioreactor for the production of microalgae. Bioresour Technol 190:189–195

    Article  CAS  Google Scholar 

  23. Huang Q, Jiang F, Wang L, Yang C (2017) Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering 3:318–329

    Article  Google Scholar 

  24. Pfaffinger CE, Schöne D, Trunz S, Löwe H, Weuster-Botz D (2016) Model-based optimization of microalgae areal productivity in flat-plate gas-lift photobioreactors. Algal Res 20:153–163

    Article  Google Scholar 

  25. Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9:165–177

    Article  CAS  Google Scholar 

  26. Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028

    Article  CAS  Google Scholar 

  27. Hindersin S, Leupold M, Kerner M, Hanelt D (2013) Irradiance optimization of outdoor microalgal cultures using solar tracked photobioreactors. Bioprocess Biosyst Eng 36:345–355

    Article  CAS  Google Scholar 

  28. Leupold M, Hindersin S, Kerner M, Hanelt D (2013) The effect of discontinuous airlift mixing in outdoor flat panel photobioreactors on growth of Scenedesmus obliquus. Bioprocess Biosyst Eng 36:1653–1663

    Article  CAS  Google Scholar 

  29. Waterbury JB, Stanier RY (1981) Isolation and growth of cyanobacteria from marine and hypersaline environments. In: Starr (ed) The prokaryotes. Springer, Berlin and Heidelberg, pp 221–223

    Chapter  Google Scholar 

  30. Kuhl A, Lorenzen H (1964) Handling and culturing of Chlorella. In: Prescott DM (ed) Methods in cell physiology. Academic, New York and London, pp 159–183

    Google Scholar 

  31. Huang Q, Liu T, Yang J, Yao L, Gao L (2011) Evaluation of radiative transfer using the finite volume method in cylindrical photoreactors. Chem Eng Sci 66(17):3930–3940

    Article  CAS  Google Scholar 

  32. Huang Q, Yao L, Liu T, Yang J (2012) Simulation of the light evolution in an annular photoreactor for the cultivation of Porphyridium cruentum. Chem Eng Sci 84:718–726

    Article  CAS  Google Scholar 

  33. Grobbelaar JU (2012) Microalgae mass culture: the constraints of scaling-up. J Appl Phycol 24:315–318

    Article  CAS  Google Scholar 

  34. Apel AC, Pfaffinger CE, Basedahl N, Mittwollen N, Göbel J, Sauter J, Brück T, Weuster-Botz D (2017) Open thin-layer cascade reactors for saline microalgae production evaluated in a physically simulated Mediterranean summer climate. Algal Res 25:381–390

    Article  Google Scholar 

Download references

Acknowledgements

Funding by the German Federal Ministry of Education and Research (BMBF) is gratefully acknowledged (Grant no. 03SF0446A). The TUM Graduate School’s support for Anja Koller is acknowledged, as well. The helpful and constructive discussions with Christina Pfaffinger and Andreas Apel at the Institute of Biochemical Engineering, Technical University of Munich, Germany are due to special appreciation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to conception and design of the studies, the interpretation of the data, as well as the critical revision and final approval of the manuscript; AK and LW performed the experiments and analyzed the experimental data. AK, DW-B, and TB wrote the manuscript.

Corresponding author

Correspondence to Dirk Weuster-Botz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koller, A.P., Wolf, L., Brück, T. et al. Studies on the scale-up of biomass production with Scenedesmus spp. in flat-plate gas-lift photobioreactors. Bioprocess Biosyst Eng 41, 213–220 (2018). https://doi.org/10.1007/s00449-017-1859-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1859-y

Keywords

Navigation