Skip to main content
Log in

Effect of heat stress on production and in-vitro antioxidant activity of polysaccharides in Ganoderma lucidum

  • Rapid Communication
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Ganoderma lucidum is a traditional Chinese medicine, and its polysaccharides possess diverse and significant pharmacological activities. This study aimed to investigate the polysaccharide production, molecular characteristics and in-vitro antioxidant activity of G. lucidum fruiting body after the mushroom was harvested and treated with heat stress (HS). HS enhanced the production of polysaccharides after harvest and treatment of 42 °C HS for 2 h, and that resulted in the highest polysaccharide yield of 10.50%, which was 45.63% higher than that of the control, while 37, 45 °C HS had no significant effect on the production. In terms of molecular characteristics, 42 °C HS significantly changed monosaccharide ratio of polysaccharides, but no apparent molecular weight and functional group changes were found in polysaccharides after HS treatment. The results of in-vitro antioxidant activity assay revealed that 42 °C HS significantly improved the antioxidant activities of polysaccharides at the concentration of 2 mg/mL. In conclusion, this study provides a promising strategy to improve the production of G. lucidum fruiting body polysaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Boh B, Berovic M, Zhang J, Zhibin L (2007) Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol Annu Rev 13(07):265

    Article  CAS  Google Scholar 

  2. Chen Y, Xie M-Y, Nie S-P, Li C, Wang Y-X (2008) Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum. Food Chem 107(1):231–241

    Article  CAS  Google Scholar 

  3. Kan Y, Chen T, Wu Y, Wu J (2015) Antioxidant activity of polysaccharide extracted from Ganoderma lucidum using response surface methodology. Int J Biol Macromol 72:151–157

    Article  CAS  Google Scholar 

  4. Tang YJ, Zhong JJ (2003) Role of oxygen supply in submerged fermentation of Ganoderma lucidum for production of Ganoderma polysaccharide and ganoderic acid. Enzyme Microbial Technol 32(3–4):478–484

    Article  CAS  Google Scholar 

  5. Liu GQ, Zhang KC (2007) Enhancement of polysaccharides production in Ganoderma lucidum by the addition of ethyl acetate extracts from Eupolyphaga sinensis and Catharsius molossus. Appl Microbiol Biotechnol 74(3):572

    Article  CAS  Google Scholar 

  6. Wei ZH, Liu L, Guo XF, Li YJ, Hou BC, Fan QL, Wang KX, Luo Y, Zhong JJ (2016) Sucrose fed-batch strategy enhanced biomass, polysaccharide, and ganoderic acids production in fermentation of Ganoderma lucidum 5.26. Bioprocess Biosyst Eng 39(1):37–44. doi:10.1007/s00449-015-1480-x

    Article  CAS  Google Scholar 

  7. Ji SL, Liu R, Ren MF, Li HJ, Xu JW (2015) Enhanced production of polysaccharide through the overexpression of homologous uridine diphosphate glucose pyrophosphorylase gene in a submerged culture of lingzhi or reishi medicinal mushroom, Ganoderma lucidum (higher Basidiomycetes). Int J Med Mushrooms 17(5):435

    Article  Google Scholar 

  8. Jepsen HF, Jensen B (2004) Accumulation of trehalose in the thermophilic fungus Chaetomium thermophilum var. coprophilum in response to heat or salt stress. Soil Biol Biochem 36(10):1669–1674. doi:10.1016/j.soilbio.2004.07.010

    Article  CAS  Google Scholar 

  9. Liu J, Wisniewski M, Droby S, Tian S, Hershkovitz V, Tworkoski T (2011) Effect of heat shock treatment on stress tolerance and biocontrol efficacy of Metschnikowia fructicola. FEMS Microbiol Ecol 76(1):145–155. doi:10.1111/j.1574-6941.2010.01037.x

    Article  CAS  Google Scholar 

  10. Feofilova EP, Tereshina VM, Memorskaia AS, Khokhlova NS (2000) Different mechanisms of the biochemical adaptation of mycelial fungi to temperature stress: changes in lipids composition. Microbiology 69(5):504–508

    Article  CAS  Google Scholar 

  11. Zhang X, Ren A, Li MJ, Cao PF, Chen TX, Zhang G, Shi L, Jiang AL, Zhao MW (2016) Heat stress modulates mycelium growth, heat shock protein expression, ganoderic acid biosynthesis, and hyphal branching of Ganoderma lucidum via Cytosolic Ca2. Appl Environ Microbiol 82(14):4112–4125. doi:10.1128/AEM.01036-16

    Article  CAS  Google Scholar 

  12. He LL (2006) Effect of deprotein technique on the extraction of polysaccharide from the leaf of Ilex kudincha C.J. Tseng. J Anhui Agric Sci 34(23):6302–6267

    Google Scholar 

  13. Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    Article  CAS  Google Scholar 

  14. Sun X, Wang H, Han X, Chen S, Zhu S, Dai J (2014) Fingerprint analysis of polysaccharides from different Ganoderma by HPLC combined with chemometrics methods. Carbohydr Polym 114:432–439

    Article  CAS  Google Scholar 

  15. Chang S, Hsu B, Chen B (2010) Structural characterization of polysaccharides from Zizyphus jujuba and evaluation of antioxidant activity. Int J Biol Macromol 47(4):445–453

    Article  CAS  Google Scholar 

  16. Zheng Q, Ren D, Yang N, Yang X (2016) Optimization for ultrasound-assisted extraction of polysaccharides with chemical composition and antioxidant activity from the Artemisia sphaerocephala Krasch seeds. Int J Biol Macromol 91:856–866

    Article  CAS  Google Scholar 

  17. Hu T, Liu D, Chen Y, Wu J, Wang S (2010) Antioxidant activity of sulfated polysaccharide fractions extracted from Undaria pinnitafida in vitro. Int J Biol Macromol 46(2):193–198

    Article  CAS  Google Scholar 

  18. Park Y-H, Son IH, Kim B, Lyu Y-S, Moon H-I, Kang H-W (2009) Poria cocos water extract (PCW) protects PC1 2 neuronal cells from beta-amyloid-induced cell death through antioxidant and antiapoptotic functions. Die Pharmazie Int J Pharm Sci 64(11):760–764

    CAS  Google Scholar 

  19. Zheng Y, Li Y, Wang W-d (2014) Optimization of ultrasonic-assisted extraction and in vitro antioxidant activities of polysaccharides from Trametes orientalis. Carbohydr Polym 111:315–323

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chinese Universities Scientific Fund (Grant no. 2017SP001); and National Natural Science Foundation of China (Grant no. 21576142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuqing Zhang.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

449_2017_1850_MOESM1_ESM.tif

Fig. S1 HPGPC chromatograms of fruiting body polysaccharides without 42 °C HS (FCK) and with 42 °C HS (FHS). The peaks without numbering were those beyond the separation range or cannot be identified aspolysaccharides (less than 1800 Da) (TIF 609 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, X., Sun, J., Xu, Z. et al. Effect of heat stress on production and in-vitro antioxidant activity of polysaccharides in Ganoderma lucidum . Bioprocess Biosyst Eng 41, 135–141 (2018). https://doi.org/10.1007/s00449-017-1850-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1850-7

Keywords

Navigation