Skip to main content
Log in

Optimum spacing between electrodes in an air-cathode single chamber microbial fuel cell with a low-cost polypropylene separator

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The performance of a single chamber microbial fuel cell (MFC) with a low-cost polypropylene separator was investigated at various electrode interspaces in a separator electrode assembly (SEA). The lag period was shortened (3.74–0.17 days) and voltage generation was enhanced (0.2–0.5 V) as electrode spacing was increased from 0 to 9 mm. Power density was increased from 220 to 370 mW/m2 with increased spacing. The highest power density of 488 mW/m2 was obtained in polarization analysis with 6 mm. The oxygen mass transfer coefficients with 0 mm (K o = 3.69 × 10−5 cm/s) electrode spacing were 3.8 times higher than with 9 mm (K o = 0.96 × 10−5 cm/s) spacing. Columbic efficiency (CE) was increased from 5 to 32% due to less oxygen diffusion with increase in electrode spacing, but on contrary the ohmic resistance (R oh) was increased from 2 to 4 Ω. In a long-term operation (200 days), a gradual decrease in cathode potentials was observed in all electrode spacing as the main limiting factor of stable MFC performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Longo S, D'Antoni BM, Bongards M, Chaparro A, Cronrath A, Fatone F, Lema JM, Mauricio-Iglesias M, Soares A, Hospido A (2016) Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement. Appl Energy 179:1251–1268

    Article  Google Scholar 

  2. Shizas I, Bagley DM (2004) Experimental determination of energy content of unknown organics in municipal wastewater streams. J Energy Engin 130:45–53

    Google Scholar 

  3. Kondaveeti S, Choi K, Kakarla R, Min B (2014) Microalgae Scenedesmus obliquus as renewable biomass feedstock for electricity generation in microbial fuel cells (MFCs). Front Environ Sci Eng 8:784–791

    Article  CAS  Google Scholar 

  4. Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101:1533–1543

    Article  CAS  Google Scholar 

  5. Logan BE (2008) Microbial fuel cells. Wiley, New York

    Google Scholar 

  6. Rahimnejad M, Ghasemi M, Najafpour GD, Ismail M, Mohammad AW, Ghoreyshi AA, Hassan SHA (2012) Synthesis, characterization and application studies of self-made Fe3O4/PES nanocomposite membranes in microbial fuel cell. Electrochim Acta 85:700–706

    Article  CAS  Google Scholar 

  7. Rahimnejad M, Bakeri G, Najafpour G, Ghasemi M, Oh S-E (2014) A review on the effect of proton exchange membranes in microbial fuel cells. Biofuel Res J 1:7–15

    Article  CAS  Google Scholar 

  8. Choi S, Kim JR, Cha J, Kim Y, Premier GC, Kim C (2013) Enhanced power production of a membrane electrode assembly microbial fuel cell (MFC) using a cost effective poly [2,5-benzimidazole] (ABPBI) impregnated non-woven fabric filter. Bioresour Technol 128:14–21

    Article  CAS  Google Scholar 

  9. Zhang X, Cheng S, Liang P, Huang X, Logan BE (2011) Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes. Bioresour Technol 102:372–375

    Article  Google Scholar 

  10. Cheng S, Liu H, Logan BE (2006) Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ Sci Technol 40:2426–2432

    Article  CAS  Google Scholar 

  11. Moon JM, Kondaveeti S, Lee TH, Song YC, Min B (2015) Minimum interspatial electrode spacing to optimize air-cathode microbial fuel cell operation with a membrane electrode assembly. Bioelectrochemistry 106:263–267

    Article  CAS  Google Scholar 

  12. Rahimnejad M, Adhami A, Darvari S, Zirepour A, Oh S-E (2015) Microbial fuel cell as new technology for bioelectricity generation: a review. Alex Eng J 54:745–756

    Article  Google Scholar 

  13. Ahn Y, Logan BE (2012) Altering anode thickness to improve power production in microbial fuel cells with different electrode distances. Energy Fuels 27:271–276

    Article  Google Scholar 

  14. Kondaveeti S, Lee J, Kakarla R, Kim HS, Min B (2014) Low-cost separators for enhanced power production and field application of microbial fuel cells (MFCs). Electrochim Acta 132:434–440

    Article  CAS  Google Scholar 

  15. Ghasemi M, Wan Daud WR, Ismail M, Rahimnejad M, Ismail AF, Leong JX, Miskan M, Ben Liew K (2013) Effect of pre-treatment and biofouling of proton exchange membrane on microbial fuel cell performance. Int J Hydrog Energy 38:5480–5484

    Article  CAS  Google Scholar 

  16. Moon JM, Kondaveeti S, Min B (2015) Evaluation of low-cost separators for increased power generation in single chamber microbial fuel cells with membrane electrode assembly. Fuel Cells 15:230–238

    Article  CAS  Google Scholar 

  17. Jung S, Mench MM, Regan JM (2011) Impedance characteristics and polarization behavior of a microbial fuel cell in response to short-term changes in medium pH. Environ Sci Technol 45:9069–9074

    Article  CAS  Google Scholar 

  18. Kondaveeti S, Lee S-H, Park H-D, Min B (2014) Bacterial communities in a bioelectrochemical denitrification system: the effects of supplemental electron acceptors. Water Res 51:25–36

    Article  CAS  Google Scholar 

  19. Manohar AK, Bretschger O, Nealson KH, Mansfeld F (2008) The polarization behavior of the anode in a microbial fuel cell. Electrochim Acta 53:3508–3513

    Article  CAS  Google Scholar 

  20. Venkata Mohan S, Mohanakrishna G, Srikanth S, Sarma PN (2008) Harnessing of bioelectricity in microbial fuel cell (MFC) employing aerated cathode through anaerobic treatment of chemical wastewater using selectively enriched hydrogen producing mixed consortia. Fuel 87:2667–2676

    Article  Google Scholar 

  21. Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298

    Article  CAS  Google Scholar 

  22. Rinaldi A, Mecheri B, Garavaglia V, Licoccia S, Di Nardo P, Traversa E (2008) Engineering materials and biology to boost performance of microbial fuel cells: a critical review. Energy Environ Sci 1(4):417–429

    Article  CAS  Google Scholar 

  23. Noori P, Najafpour Darzi G (2016) Enhanced power generation in annular single-chamber microbial fuel cell via optimization of electrode spacing using chocolate industry wastewater. Biotechnol Appl Biochem 63:427–434

    Article  CAS  Google Scholar 

  24. Rozendal RA, Hamelers HVM, Buisman CJN (2006) Effects of membrane cation transport on pH and microbial fuel cell performance. Environ Sci Technol 40(17):5206–5211

    Article  CAS  Google Scholar 

  25. Torres CI, Lee H-S, Rittmann BE (2008) Carbonate species as OH carriers for decreasing the ph gradient between cathode and anode in biological fuel cells. Environ Sci Technol 42:8773–8777

    Article  CAS  Google Scholar 

  26. Ahn Y, Zhang F, Logan BE (2014) Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes. J Power Sources 247:655–659

    Article  CAS  Google Scholar 

  27. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192

    Article  CAS  Google Scholar 

  28. Kondaveeti S, Kakarla R, Kim HS, Kim B-G, Min B (2017) The performance and long-term stability of low-cost separators in single-chamber bottle-type microbial fuel cells. Environ Technol. doi:10.1080/09593330.2017.1299223

    Google Scholar 

  29. Manohar AK, Bretschger O, Nealson KH, Mansfeld F (2008) The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell. Bioelectrochemistry 72:149–154

    Article  CAS  Google Scholar 

  30. Choi M-J, Chae K-J, Ajayi FF, Kim K-Y, Yu H-W, C-w Kim, Kim IS (2011) Effects of biofouling on ion transport through cation exchange membranes and microbial fuel cell performance. Bioresour Technol 102:298–303

    Article  CAS  Google Scholar 

  31. Kim JR, Cheng S, Oh S-E, Logan BE (2007) Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ Sci Technol 41:1004–1009

    Article  CAS  Google Scholar 

  32. Min B, Logan BE (2004) Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 38:5809–5814

    Article  CAS  Google Scholar 

  33. Zhao F, Harnisch F, Schröder U, Scholz F, Bogdanoff P, Herrmann I (2006) Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environ Sci Technol 40:5193–5199

    Article  CAS  Google Scholar 

  34. Xu J, Sheng G-P, Luo H-W, Li W-W, Wang L-F, Yu H-Q (2012) Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell. Water Res 46:1817–1824

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by a National Research Foundation of Korea Grant (2015R1D1A1A09059935).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Booki Min.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

449_2017_1838_MOESM1_ESM.pptx

Supporting data: Schematic representation of single chamber microbial fuel cell (MFC) with SEA (PPTX 106 kb). Supporting data: Voltage generations noticed in MFC with 1 K Ω as an external resistance, during long-term operation at different electrode distances; 0 mm(A), 3 mm(B), 6 mm(C), 9 mm(D) (PPTX 353 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondaveeti, S., Moon, J.M. & Min, B. Optimum spacing between electrodes in an air-cathode single chamber microbial fuel cell with a low-cost polypropylene separator. Bioprocess Biosyst Eng 40, 1851–1858 (2017). https://doi.org/10.1007/s00449-017-1838-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1838-3

Keywords

Navigation