Skip to main content
Log in

Use of solvent mixtures for total lipid extraction of Chlorella vulgaris and gas chromatography FAME analysis

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Lipid extraction is the bottleneck step for algae-based biodiesel production. Herein, 12 solvent mixture systems (mixtures of three non-polar and two polar organic solvents) were examined to evaluate their effects on the total lipid yield from Chlorella vulgaris (C. vulgaris). Moreover, the extraction yields of three solvent systems with maximum extraction efficiency of esterifiable lipids were determined by acidic transesterification and GC–FID analysis. Three solvent systems, which resulted in a higher extraction yield, were further subjected to fatty acid methyl ester (FAME) analysis. The total lipid extraction yields (based on dry biomass) were (38.57 ± 1.51), (25.33 ± 0.58), and (25.17 ± 1.14) %, for chloroform–methanol (1:2) (C1M2), hexane–methanol (1:2) (H1M2), and chloroform–methanol (2:1) (C2M1), respectively. The extraction efficiency of C1M2 was approximately 1.5 times higher than H1M2 and C2M1, whereas the FAME profile of extracted lipids by H1M2 and C1M2 were almost identical. Moreover, the esterifiable lipid extraction yields of (18.14 ± 2.60), (16.66 ± 0.35), and (13.22 ± 0.31) % (based on dry biomass) were obtained for C1M2, H1M2, and C2M1 solvent mixture systems, respectively. The biodiesel fuel properties produced from C. vulgaris were empirically predicted and compared to that of the EN 14214 and ASTM 6751 standard specifications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Moheimani N, Cord-Ruwisch R, Raes E, Borowitzka M (2013) Non-destructive oil extraction from Botryococcus braunii (Chlorophyta). J Appl Phycol 25(6):1653–1661. doi:10.1007/s10811-013-0012-9

    Article  CAS  Google Scholar 

  2. Hosseini M, Starvaggi HA, Ju L-K (2016) Additive-free harvesting of oleaginous phagotrophic microalga by oil and air flotation. Bioprocess Biosyst Eng 39(7):1181–1190. doi:10.1007/s00449-016-1594-9

    Article  CAS  Google Scholar 

  3. Hosseini M. (2013) Sustainable pretreatment/upgrading of high free fatty acid feedstocks for biodiesel production. Ph.D. thesis, University of Akron, Akron, USA

  4. Hosseini M, Ju L-K (2015) Use of phagotrophic microalga Ochromonas danica to pretreat waste cooking oil for biodiesel production. J Am Oil Chem Soc 92(1):29–35

    Article  CAS  Google Scholar 

  5. Taziki M, Ahmadzadeh H, Murry MA (2015) Growth of chlorella vulgaris in high concentrations of nitrate and nitrite for wastewater treatment. Curr Biotechnol 4(4):1–7. doi:10.2174/2211550104666150930204835

    Google Scholar 

  6. Taziki M, Ahmadzadeh H, Murry MA, Lyon SR (2015) Nitrate and nitrite removal from wastewater using algae. Curr Biotechnol 4:1–15. doi:10.2174/2211550104666150828193607

    Google Scholar 

  7. Raeesossadati MJ, Ahmadzadeh H, McHenry MP, Moheimani NR (2014) CO2 bioremediation by microalgae in photobioreactors: impacts of biomass and CO2 concentrations, light, and temperature. Algal Res 6(Part A):78–85. doi:10.1016/j.algal.2014.09.007

    Article  Google Scholar 

  8. Halim R, Danquah MK, Webley PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30(3):709–732. doi:10.1016/j.biotechadv.2012.01.001

    Article  CAS  Google Scholar 

  9. Lari Z, Moradi-kheibari N, Ahmadzadeh H, Abrishamchi P, Moheimani NR, Murry MA (2016) Bioprocess engineering of microalgae to optimize lipid production through nutrient management. J Appl Phycol. doi:10.1007/s10811-016-0884-6

    Google Scholar 

  10. Ramírez-Verduzco LF, Rodríguez-Rodríguez JE, Jaramillo-Jacob AdR (2012) Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel 91(1):102–111. doi:10.1016/j.fuel.2011.06.070

    Article  Google Scholar 

  11. Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez Á (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technol 100(1):261–268. doi:10.1016/j.biortech.2008.06.039

    Article  CAS  Google Scholar 

  12. Talebi AF, Mohtashami SK, Tabatabaei M, Tohidfar M, Bagheri A, Zeinalabedini M, Hadavand Mirzaei H, Mirzajanzadeh M, Malekzadeh Shafaroudi S, Bakhtiari S (2013) Fatty acids profiling: a selective criterion for screening microalgae strains for biodiesel production. Algal Res 2(3):258–267. doi:10.1016/j.algal.2013.04.003

    Article  Google Scholar 

  13. Talebi AF, Tabatabaei M, Chisti Y (2014) BiodieselAnalyzer: a user-friendly software for predicting the properties of prospective biodiesel. Biofuel Res J 1(2):55–57. doi:10.18331/brj2015.1.2.4

    Article  CAS  Google Scholar 

  14. Krisnangkura K (1986) A simple method for estimation of cetane index of vegetable oil methyl esters. J Am Oil Chem Soc 63(4):552–553. doi:10.1007/BF02645752

    Article  CAS  Google Scholar 

  15. Sarin A, Arora R, Singh NP, Sarin R, Malhotra RK, Kundu K (2009) Effect of blends of Palm–Jatropha–Pongamia biodiesels on cloud point and pour point. Energy 34(11):2016–2021. doi:10.1016/j.energy.2009.08.017

    Article  CAS  Google Scholar 

  16. Hidalgo P, Ciudad G, Navia R (2016) Evaluation of different solvent mixtures in esterifiable lipids extraction from microalgae Botryococcus braunii for biodiesel production. Bioresource Technol 201:360–364. doi:10.1016/j.biortech.2015.11.031

    Article  CAS  Google Scholar 

  17. Seo YH, Sung M, Oh Y-K, Han J-I (2016) Lipid extraction from microalgae cell using persulfate-based oxidation. Bioresour Technol 200:1073–1075. doi:10.1016/j.biortech.2015.10.106

    Article  CAS  Google Scholar 

  18. Meullemiestre A, Breil C, Abert-Vian M, Chemat F (2016) Microwave, ultrasound, thermal treatments, and bead milling as intensification techniques for extraction of lipids from oleaginous Yarrowia lipolytica yeast for a biojetfuel application. Bioresour Technol 211:190–199. doi:10.1016/j.biortech.2016.03.040

    Article  CAS  Google Scholar 

  19. Zeng D, Li R, Yan T, Fang T (2014) Perspectives and advances of microalgal biodiesel production with supercritical fluid technology. RSC Adv 4(75):39771–39781. doi:10.1039/C4RA05766J

    Article  CAS  Google Scholar 

  20. Zbinden MD, Sturm BS, Nord RD, Carey WJ, Moore D, Shinogle H, Stagg-Williams SM (2013) Pulsed electric field (PEF) as an intensification pretreatment for greener solvent lipid extraction from microalgae. Biotechnol Bioeng 110(6):1605–1615. doi:10.1002/bit.24829

    Article  Google Scholar 

  21. Dejoye C, Vian MA, Lumia G, Bouscarle C, Charton F, Chemat F (2011) Combined extraction processes of lipid from chlorella vulgaris microalgae: microwave prior to supercritical carbon dioxide extraction. Int J Mol Sci 12(12):9332–9341. doi:10.3390/ijms12129332

    Article  CAS  Google Scholar 

  22. Navarro López E, Robles Medina A, González Moreno PA, Esteban Cerdán L, Molina Grima E (2016) Extraction of microalgal lipids and the influence of polar lipids on biodiesel production by lipase-catalyzed transesterification. Bioresour Technol 216:904–913. doi:10.1016/j.biortech.2016.06.035

    Article  Google Scholar 

  23. Tang Y, Zhang Y, Rosenberg JN, Sharif N, Betenbaugh MJ, Wang F (2016) Efficient lipid extraction and quantification of fatty acids from algal biomass using accelerated solvent extraction (ASE). RSC Adv 6(35):29127–29134. doi:10.1039/C5RA23519G

    Article  CAS  Google Scholar 

  24. Ryckebosch E, Muylaert K, Foubert I (2012) Optimization of an analytical procedure for extraction of lipids from microalgae. J Am Oil Chem Soc 89(2):189–198. doi:10.1007/s11746-011-1903-z

    Article  CAS  Google Scholar 

  25. Halim R, Gladman B, Danquah MK, Webley PA (2011) Oil extraction from microalgae for biodiesel production. Bioresour Technol 102(1):178–185. doi:10.1016/j.biortech.2010.06.136

    Article  CAS  Google Scholar 

  26. Grima EM, González MJI, Giménez AG (2013) Solvent extraction for microalgae lipids. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer Netherlands, Dordrecht, pp 187–205. doi:10.1007/978-94-007-5479-9_11

    Chapter  Google Scholar 

  27. Li Y, Ghasemi Naghdi F, Garg S, Adarme-Vega TC, Thurecht KJ, Ghafor WA, Tannock S, Schenk PM (2014) A comparative study: the impact of different lipid extraction methods on current microalgal lipid research. Microb Cell Fact 13:14. doi:10.1186/1475-2859-13-14

    Article  Google Scholar 

  28. Soares AT, da Costa DC, Silva BF, Lopes RG, Derner RB, Antoniosi Filho NR (2014) Comparative analysis of the fatty acid composition of microalgae obtained by different oil extraction methods and direct biomass transesterification. Bioenerg Res 7(3):1035–1044. doi:10.1007/s12155-014-9446-4

    Article  CAS  Google Scholar 

  29. Bligh E, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37(8):911–917. doi:10.1139/o59-099

    Article  CAS  Google Scholar 

  30. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226(1):497–509

    CAS  Google Scholar 

  31. Araujo GS, Matos LJBL, Fernandes JO, Cartaxo SJM, Gonçalves LRB, Fernandes FAN, Farias WRL (2013) Extraction of lipids from microalgae by ultrasound application: prospection of the optimal extraction method. Ultrason Sonochem 20(1):95–98. doi:10.1016/j.ultsonch.2012.07.027

    Article  CAS  Google Scholar 

  32. Ranjith Kumar R, Hanumantha R, Arumugam M (2015) Lipid extraction methods from microalgae: a comprehensive review. Front Energy Res 2:1–9. doi:10.3389/fenrg.2014.00061

    Article  Google Scholar 

  33. Atadashi IM, Aroua MK, Aziz AA (2010) High quality biodiesel and its diesel engine application: a review. Renew Sust Energy Rev 14(7):1999–2008. doi:10.1016/j.rser.2010.03.020

    Article  CAS  Google Scholar 

  34. Sathish A, Sims RC (2012) Biodiesel from mixed culture algae via a wet lipid extraction procedure. Bioresour Technol 118:643–647. doi:10.1016/j.biortech.2012.05.118

    Article  CAS  Google Scholar 

  35. Kale A (2012) Manipulation of polarity and water content by stepwise selective extraction and fractionation of algae. Google Patents

  36. Axelsson M, Gentili F (2014) A single-step method for rapid extraction of total lipids from green microalgae. PLoS One 9(2):e89643. doi:10.1371/journal.pone.0089643

    Article  Google Scholar 

  37. Liu B, Benning C (2013) Lipid metabolism in microalgae distinguishes itself. Curr Opin Biotechnol 24(2):300–309. doi:10.1016/j.copbio.2012.08.008

    Article  CAS  Google Scholar 

  38. Yang F, Xiang W, Sun X, Wu H, Li T, Long L (2014) A novel lipid extraction method from wet microalga Picochlorum sp. at room temperature. Mar Drugs 12(3):1258–1270. doi:10.3390/md12031258

    Article  CAS  Google Scholar 

  39. Ryckebosch E, Bermúdez SPC, Termote-Verhalle R, Bruneel C, Muylaert K, Parra-Saldivar R, Foubert I (2014) Influence of extraction solvent system on the extractability of lipid components from the biomass of Nannochloropsis gaditana. J Appl Phycol 26(3):1501–1510. doi:10.1007/s10811-013-0189-y

    Article  CAS  Google Scholar 

  40. Meloan CE (1999) Chemical separations: principles, techniques and experiments. Wiley-Interscience, New York, USA

    Google Scholar 

  41. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111(1):1–61. doi:10.1099/00221287-111-1-1

    Article  Google Scholar 

  42. Mercer P, Armenta RE (2011) Developments in oil extraction from microalgae. Eur J Lipid Sci Technol 113(5):539–547. doi:10.1002/ejlt.201000455

    Article  CAS  Google Scholar 

  43. Izutsu K (2009) Electrochemistry in nonaqueous solutions. Wiley, New York, USA

    Book  Google Scholar 

  44. Knothe G (2002) Structure indices in FA chemistry. How relevant is the iodine value? J Am Oil Chem Soc 79(9):847–854. doi:10.1007/s11746-002-0569-4

    Article  CAS  Google Scholar 

  45. Hussain J, Liu Y, Lopes WA, Druzian JI, Souza CO, Carvalho GC, Nascimento IA, Liao W (2015) Effects of different biomass drying and lipid extraction methods on algal lipid yield, fatty acid profile, and biodiesel quality. Appl Biochem Biotechnol 175(6):3048–3057. doi:10.1007/s12010-015-1486-5

    Article  CAS  Google Scholar 

  46. Marcus Y (2002) Solvent mixtures: properties and selective solvation. Taylor & Francis, Boca Raton, USA

    Google Scholar 

  47. Clough SR (2014) Hexane. In: Wexler P (ed) Encyclopedia of toxicology, 3rd edn. Academic Press, Oxford, pp 900–904. doi:10.1016/B978-0-12-386454-3.00397-3

    Chapter  Google Scholar 

  48. Sivapunniyam A, Wiromrat N, Myint MTZ, Dutta J (2011) High-performance liquefied petroleum gas sensing based on nanostructures of zinc oxide and zinc stannate. Sens Actuators B: Chem 157(1):232–239

    Article  CAS  Google Scholar 

  49. Azevedo ABAd, Mazzafera P, Mohamed RS, Melo SABVd, Kieckbusch TG (2008) Extraction of caffeine, chlorogenic acids and lipids from green coffee beans using supercritical carbon dioxide and co-solvents. Braz J Chem Eng 25:543–552

    Article  Google Scholar 

  50. Knothe G (2008) “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 22(2):1358–1364

    Article  CAS  Google Scholar 

  51. Talebi AF, Tohidfar M, Bagheri A, Lyon SR, Salehi-Ashtiani K, Tabatabaei M (2014) Manipulation of carbon flux into fatty acid biosynthesis pathway in Dunaliella salina using AccD and ME genes to enhance lipid content and to improve produced biodiesel quality. Biofuel Res J 1(3):91–97. doi:10.18331/brj2015.1.3.6

    Article  CAS  Google Scholar 

  52. Islam AKMS, Amin R, Ali M, Islam MA, Ayoko GA, Brown R, Stuart D, Heimann K (2013) Influence of fatty acid structure on fuel properties of algae derived biodiesel. In: Paper presented at the procedia engineering, 2013/01/01

  53. Knothe G (2011) Will biodiesel derived from algal oils live up to its promise? A fuel property assessment. Lipid Technol 23(11):247–249. doi:10.1002/lite.201100151

    Article  Google Scholar 

  54. Imahara H, Minami E, Saka S (2006) Thermodynamic study on cloud point of biodiesel with its fatty acid composition. Fuel 85(12–13):1666–1670. doi:10.1016/j.fuel.2006.03.003

    Article  CAS  Google Scholar 

  55. Knothe G (2006) Analyzing biodiesel: standards and other methods. J Am Oil Chem Soc 83(10):823–833. doi:10.1007/s11746-006-5033-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their appreciation for the financial support from the ATF committee and Ferdowsi University of Mashhad (Grant Numbers of 3/29836).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Ahmadzadeh.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi-kheibari, N., Ahmadzadeh, H. & Hosseini, M. Use of solvent mixtures for total lipid extraction of Chlorella vulgaris and gas chromatography FAME analysis. Bioprocess Biosyst Eng 40, 1363–1373 (2017). https://doi.org/10.1007/s00449-017-1794-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1794-y

Keywords

Navigation