Skip to main content
Log in

Lipid accumulation and metabolic analysis based on transcriptome sequencing of filamentous oleaginous microalgae Tribonema minus at different growth phases

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Filamentous oleaginous microalgae specie Tribonema minus is a promising feedstock for biodiesel production. However, the metabolic mechanism of lipid production in this filamentous microalgal specie remains unclear. Here, we compared the lipid accumulation of T. minus at different growth phases, and described the de novo transcriptome sequencing and assembly and identified important pathways and genes involved in TAG production. Total lipid increased by 2.5-fold and its TAG level in total lipid reached 81.1% at stationary phase. Using the genes involved in the lipid metabolism, the TAG biosynthesis pathways were generated. Moreover, results also demonstrated that, in addition to the observed overexpression of the fatty acid synthesis pathway, TAG production at stationary growth phase was bolstered by repression of the β-oxidation pathway, up-regulation of genes that funnels acetyl-CoA to lipid biosynthesis, especially gene encoding for phospholipid:diacylglycerol acyltransferase (PDAT) which funnels DAG to TAG biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huang W, Kim J (2013) Cationic surfactant-based method for simultaneous harvesting and cell disruption of a microalgal biomass. Bioresour Technol 149:579–581

    Article  CAS  Google Scholar 

  2. Ahmad AL, Yasin NHM, Derek CJC, Lim JK (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sust Energ Rev 15(1):584–593

    Article  CAS  Google Scholar 

  3. Belotti G, Caprariis BD, Filippis PD, Scarsella M, Verdene N (2014) Effect of Chlorella vulgaris growing conditions on bio-oil production via fast pyrolysis. Biomass Bioenerg 61:187–195

    Article  CAS  Google Scholar 

  4. Hu Q, Sommereld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  Google Scholar 

  5. Ho SH, Ye X, Hasunuma T, Chang JS, Kondo A (2014) Perspective on engineering strategies for improving biofuel production from microalgae: a critical review. Biotechnol Adv 32:1448–1459

    Article  CAS  Google Scholar 

  6. Simth VH, Sturm BS, Denoyelles FJ, Billngs SA (2010) The ecology of algal biodiesel production. Trends Ecol Evol (Amst.) 25:301–309

    Article  Google Scholar 

  7. Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274

    Article  CAS  Google Scholar 

  8. Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177:272–280

    Article  CAS  Google Scholar 

  9. Rofolfi L, Chini ZG, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  Google Scholar 

  10. Wang H, Gao LL, Chen L, Guo FJ, Liu TZ (2013) Integration process of biodiesel production from filamentous oleaginous microalgae Tribonema minus. Bioresour Technol 142:39–44

    Article  CAS  Google Scholar 

  11. Wang H, Ji B, Wang JF, Guo FJ, Zhou WJ, Gao LL, Liu TZ (2014) Growth and biochemical composition of filamentous microalgae Tribonema sp. as potential biofuel feedstock. Bioprocess Biosyst Eng 37:2607–2613

    Article  CAS  Google Scholar 

  12. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  13. Wang H, Zhou WJ, Cheng WT, Gao LL, Liu TZ (2016) Strategy study on enhancing lipid productivity of filamentous oleaginous microalgae Tribonema. Bioresour Technol 218:161–166

    Article  Google Scholar 

  14. Ivan KK, Katya NV, Krasimira DD (2011) Species composition and distribution of genus Tribonema (Xanthophyceae) in Bulgaria. Phytologia Balcanica 17:273–277

    Google Scholar 

  15. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    Article  CAS  Google Scholar 

  16. Ioki M, Baba M, Shiraiwa Y, Watanabe MM (2012) Transcriptome analysis of an oil-rich race B strain of Botryococcus braunii (BOT-22) by de novo assembly of pyrosequencing cDNA reads. Bioresour Technol 109:292–296

    Article  CAS  Google Scholar 

  17. Muto M, Fukuda Y, Nemoto M, Yoshino T, Matsunaga T, Tanaka T (2013) Establishment of a genetic transformation system for the marine pennate diatom Fistulifer sp. strain JPCC DA0580—a high triglyceride producer. Mar Biotechnol (NY) 15:48–55

    Article  CAS  Google Scholar 

  18. Yu MJ, Yang J, Lin XZ (2016) De-novo assembly and characterization of Chlorella minutissima UTEX2341 transcriptome by paired-end sequencing and the identification of genes related to the biosynthesis of lipids for biodiesel. Mar Genom 25:69–74

    Article  Google Scholar 

  19. Guo FJ, Wang H, Wang JF, Zhou WJ, Gao LL, Chen L, Dong QZ, Zhang W, Liu TZ (2014) Special biochemical responses to nitrogen deprivation of filamentous oleaginous microalgae Tribonema sp. Bioresour Technol 158:19–24

    Article  CAS  Google Scholar 

  20. Dempster TA, Sommerfeld MR (1998) Effects of environmental conditions on growth and lipid accumulation in Nitzschia communis (Bacillariophyceae). J Phycol 34:12–21

    Article  Google Scholar 

  21. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  Google Scholar 

  22. Fedosov SN, Brask J, Xu X (2011) Analysis of biodiesel conversion using thin layer chromatography and nonlinear calibration curves. J Chromatogr A 1218:275–292

    Article  Google Scholar 

  23. Su XL, Xu JL, Yan XJ, Zhao P, Chen JJ, Zhou CX, Zhao F, Li S (2013) Lipidomic changes during different growth stages of Nitzschia closterium f. minutissima. Metabolimics 9:300–310

    Article  CAS  Google Scholar 

  24. Haigh WG, Yoder TF, Ericson L, Pratum T, Winget RR (1996) The characterisation and cyclic production of a highly unsaturated homoserine lipid in Chlorella minutissima. Biochim Biophys Acta 1299:183–190

    Article  Google Scholar 

  25. Hsu FF, Turk J (1999) Structural characterization of triacylglycerols as lithiated adducts by electrospray ionization mass spectrometry using low-energy collisionally activated dissociation on a triple stage quadrupole instrument. J Am Soc Mass Spectrom 10:587–599

    Article  CAS  Google Scholar 

  26. Pulfer M, Murphy RC (2003) Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev 22:332–364

    Article  CAS  Google Scholar 

  27. Roche SA, Leblond JD (2010) Betaine lipids in chlorarachniophytes. Phycol Res 58:298–305

    Article  CAS  Google Scholar 

  28. Das P, Obbard JP (2011) Incremental energy supply for microalgae culture in a photobioreactor. Bioresour Technol 102:2973–2978

    Article  CAS  Google Scholar 

  29. Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Taloon M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with Blast2GO suite. Nucleic Acids Res 36:3420–3435

    Article  CAS  Google Scholar 

  30. Shang CH, Bi GC, Yuan ZH, Yang ZM, Alam MA, Xie J (2016) Discovery of genes for production of biofuels through transcriptome sequencing of Dunaliella parva. Algal Res 13:318–326

    Article  Google Scholar 

  31. Zheng MG, Tian JH, Yang GP, Zheng L, Chen GG, Chen JL, Wang B (2013) Transcriptome sequencing, annotation and expression analysis of Nannochloropsis sp. at different growth phases. Gene 523:117–121

    Article  CAS  Google Scholar 

  32. Hamid RY, Berat ZH, Carol H, Jordan P (2012) Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation. Biotechnol Biofuel 5:1–16

    Article  Google Scholar 

  33. Vieler A, Wu GX, Tsai CH, Bullard B, Cornish AJ, Harvey C, Reca IB, Thornburg C, Achawanantakun R, Buehl CJ (2012) Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP 1779. PLoS Genet 8(11):e1003064

    Article  CAS  Google Scholar 

  34. Oelkers P, Cromley D, Padamsee M, Billheimer JT, Sturley SL (2002) The DGA1 gene determines a second triglyceride synthetic pathway in yeast. J Biol Chem 277:8877–8881

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Research Program of Application Foundation of Qingdao (Grant No. 16-5-1-68-jch) from Qingdao Science and Technology Bureau, National Key R&D program from Ministry of Science and Technology of China (Grant No. 2016YFB0601001-02) and Marine economic innovation and development regional demonstration project of Qingdao.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianzhong Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Gao, L., Shao, H. et al. Lipid accumulation and metabolic analysis based on transcriptome sequencing of filamentous oleaginous microalgae Tribonema minus at different growth phases. Bioprocess Biosyst Eng 40, 1327–1335 (2017). https://doi.org/10.1007/s00449-017-1791-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1791-1

Keywords

Navigation