Characterization of silver nanoparticles produced by biosynthesis mediated by Fusarium oxysporum under different processing conditions

Abstract

The goal of this study was the biosynthesis of silver nanoparticles (SNPs) mediated by the fungus Fusarium oxysporum, as well as the characterization of these nanoparticles including evaluation of the particles size and stability under different processing conditions. The results showed that the biosynthesis produced silver nanoparticles having a mean size of 34 nm and zeta potential values below −30 mV at the conditions used, characterizing the nanoparticles as being stable in suspension. Ultraviolet–visible spectroscopy and flame atomic absorption spectroscopy confirmed the formation of silver nanoparticles and Fourier transform infrared spectroscopy detected the bands corresponding to the binding vibration of amide I and II bands of proteins in addition to the presence of cyclic alkanes, cyclohexane, ethers, and aromatic hydrocarbons. Finally, field emission scanning electron microscopy and transmission electron microscopy revealed the formation of spherical and well-dispersed SNPs.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Vigneshwaran N, Ashtaputre NM, Varadarajan PV et al (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418. doi:10.1016/j.matlet.2006.07.042

    CAS  Article  Google Scholar 

  2. 2.

    Dar MA, Ingle A, Rai M (2013) Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomed Nanotechnol Biol Med 9:105–110. doi:10.1016/j.nano.2012.04.007

    CAS  Article  Google Scholar 

  3. 3.

    Gholami-Shabani M, Akbarzadeh A, Norouzian D et al (2014) Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum. Appl Biochem Biotechnol 172:4084–4098. doi:10.1007/s12010-014-0809-2

    CAS  Article  Google Scholar 

  4. 4.

    Gade AK, Bonde P, Ingle AP et al (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2:243–247. doi:10.1166/jbmb.2008.401

    Article  Google Scholar 

  5. 5.

    Syed A, Saraswati S, Kundu GC, Ahmad A (2013) Biological synthesis of silver nanoparticles using the fungus Humicola sp. And evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim Acta Part A Mol Biomol Spectrosc 114:144–147. doi:10.1016/j.saa.2013.05.030

    CAS  Article  Google Scholar 

  6. 6.

    Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28:580–588. doi:10.1016/j.tibtech.2010.07.006

    CAS  Article  Google Scholar 

  7. 7.

    Jiang H, Moon KS, Li Y, Wong CP (2006) Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites. Chem Mater 18:2969–2973. doi:10.1021/cm0527773

    CAS  Article  Google Scholar 

  8. 8.

    Khatoon N, Ahmad R, Sardar M (2015) Robust and fluorescent silver nanoparticles using Artemisia annua: biosynthesis, characterization and antibacterial activity. Biochem Eng J 102:91–97. doi:10.1016/j.bej.2015.02.019

    CAS  Article  Google Scholar 

  9. 9.

    Kumar S, Singh M, Halder D, Mitra A (2014) Mechanistic study of antibacterial activity of biologically synthesized silver nanocolloids. Colloids Surf A Physicochem Eng Asp 449:82–86. doi:10.1016/j.colsurfa.2014.02.027

    CAS  Article  Google Scholar 

  10. 10.

    Ledwith DM, Whelan AM, Kelly JM (2007) A rapid, straight-forward method for controlling the morphology of stable silver nanoparticles. J Mater Chem 17:2459. doi:10.1039/b702141k

    CAS  Article  Google Scholar 

  11. 11.

    Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanoparticle Res 10:507–517. doi:10.1007/s11051-007-9275-x

    CAS  Article  Google Scholar 

  12. 12.

    Sintubin L, Verstraete W, Boon N (2012) Biologically produced nanosilver: current state and future perspectives. Biotechnol Bioeng 109:2422–2436. doi:10.1002/bit.24570

    CAS  Article  Google Scholar 

  13. 13.

    Parikh RY, Singh S, Prasad BLV et al (2008) Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism. ChemBioChem 9:1415–1422. doi:10.1002/cbic.200700592

    CAS  Article  Google Scholar 

  14. 14.

    Durán N, Marcato PD, Durán M et al (2011) Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl Microbiol Biotechnol 90:1609–1624. doi:10.1007/s00253-011-3249-8

    Article  Google Scholar 

  15. 15.

    Hulkoti NI, Taranath TC (2014) Biosynthesis of nanoparticles using microbes—a review. Colloids Surf B Biointerfaces 121:474–483. doi:10.1016/j.colsurfb.2014.05.027

    CAS  Article  Google Scholar 

  16. 16.

    Ahmad A, Mukherjee P, Senapati S et al (2003) Extracellular biosynthesis of sil v er nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 28:313–318 doi:S0927-7765(02)00174-1

    CAS  Article  Google Scholar 

  17. 17.

    Durán N, Marcato PD, Alves OL et al (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8. doi:10.1186/1477-3155-3-8

    Article  Google Scholar 

  18. 18.

    Ingle A, Gade A, Pierrat S et al (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144. doi:10.2174/157341308784340804

    CAS  Article  Google Scholar 

  19. 19.

    Birla SS, Gaikwad SC, Gade AK, Rai MK (2013) Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions. Sci World J. doi:10.1155/2013/796018

    Google Scholar 

  20. 20.

    Patil V, Sastry M (1997) Electrostatically controlled diffusion of carboxylic acid derivatized Q-state CdS nanoparticles in thermally evaporated fatty amine films. J Chem Soc Faraday Trans 93:4347–4353. doi:10.1039/a704355d

    Article  Google Scholar 

  21. 21.

    Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800. doi:10.1021/la9502711

    CAS  Article  Google Scholar 

  22. 22.

    Basavaraja S, Balaji SD, Lagashetty A et al (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43:1164–1170. doi:10.1016/j.materresbull.2007.06.020

    CAS  Article  Google Scholar 

  23. 23.

    Bera A, Belhaj H (2016) Application of nanotechnology by means of nanoparticles and nanodispersions in oil recovery—a comprehensive review. J Nat Gas Sci Eng 34:1284–1309. doi:10.1016/j.jngse.2016.08.023

    CAS  Article  Google Scholar 

  24. 24.

    Mirhosseini H, Tan CP, Hamid NSA, Yusof S (2008) Effect of Arabic gum, xanthan gum and orange oil contents on potential, conductivity, stability, size index and pH of orange beverage emulsion. Colloids Surf A Physicochem Eng Asp 315:47–56. doi:10.1016/j.colsurfa.2007.07.007

    CAS  Article  Google Scholar 

  25. 25.

    Husseiny SM, Salah TA, Anter HA (2015) Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni-Suef Univ J Basic Appl Sci 4:225–231. doi:10.1016/j.bjbas.2015.07.004

    Article  Google Scholar 

  26. 26.

    Nayak RR, Pradhan N, Behera D et al (2011) Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the process and optimization. J Nanoparticle Res 13:3129–3137. doi:10.1007/s11051-010-0208-8

    CAS  Article  Google Scholar 

  27. 27.

    Deepak V, Kalishwaralal K, Pandian SRK, Gurunathan S (2011) An insight into the bacterial biogenesis of silver nanoparticles, industrial production and scale-up. In: Rai M, Duran N (eds) Metal nanoparticles in microbiology. Springer, Berlin, Heidelberg, pp 17–35. doi:10.1007/978-3-642-18312-6_2

  28. 28.

    Sanghi R, Verma P (2009) A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus. Chem Eng J 155:886–891. doi:10.1016/j.cej.2009.08.006

    CAS  Article  Google Scholar 

  29. 29.

    Darroudi M, Bin Ahmad M, Abdullah AH, Ibrahim NA (2011) Green synthesis and characterization of gelatin-based and sugar-reduced silver nanoparticles. Int J Nanomed 6:569–574. doi:10.2147/IJN.S16867

    CAS  Article  Google Scholar 

  30. 30.

    Gajbhiye M, Kesharwani J, Ingle A et al (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed Nanotechnol Biol Med 5:382–386. doi:10.1016/j.nano.2009.06.005

    CAS  Article  Google Scholar 

  31. 31.

    Eftink MR, Ghiron CA (1981) Fluorescence quenching studies with proteins. Anal Biochem 114:199–227. doi:10.1016/0003-2697(81)90474-7

    CAS  Article  Google Scholar 

  32. 32.

    Fayaz AM, Balaji K, Girilal M et al (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 6:103–109. doi:10.1016/j.nano.2009.04.006

    CAS  Article  Google Scholar 

  33. 33.

    Roh Y, Lauf RJ, McMillan AD et al (2001) Microbial synthesis and the characterization of metal-substituted magnetites. Solid State Commun 118:529–534. doi:10.1016/S0038-1098(01)00146-6

    CAS  Article  Google Scholar 

  34. 34.

    Labrenz M, Druschel GK, Thomsen-Ebert T, Gilbert B, Welch SA, Kemner KM, Logan GA, Summons RE, De Stasio G, Bond PL, Lai B, Kelly SD, Banfield JF (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290(5497):1744–1747. doi:10.1126/science.290.5497.1744

    CAS  Article  Google Scholar 

  35. 35.

    Silverstein RM, Webster FX, Kiemle DJ (2006) Spectrometric identification of organic compounds. Spectrom Identif Org Compd. doi:10.1021/ja00903a077

    Google Scholar 

  36. 36.

    Kathiresan K, Alikunhi NM, Pathmanaban S et al (2010) Analysis of antimicrobial silver nanoparticles synthesized by coastal strains of Escherichia coli and Aspergillus niger. Can J Microbiol 56:1050–1059. doi:10.1139/W10-094

    CAS  Article  Google Scholar 

  37. 37.

    Gole A, Dash C, Ramakrishnan V et al (2001) Pepsin-gold colloid conjugates: preparation, characterization, and enzymatic activity. Langmuir 17:1674–1679. doi:10.1021/la001164w

    CAS  Article  Google Scholar 

  38. 38.

    Kalimuthu K, Suresh Babu R, Venkataraman D et al (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B Biointerfaces 65:150–153. doi:10.1016/j.colsurfb.2008.02.018

    CAS  Article  Google Scholar 

  39. 39.

    Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces 47:160–164. doi:10.1016/j.colsurfb.2005.11.026

    CAS  Article  Google Scholar 

  40. 40.

    El-Rafie MH, Shaheen TI, Mohamed AA, Hebeish A (2012) Bio-synthesis and applications of silver nanoparticles onto cotton fabrics. Carbohydr Polym 90:915–920. doi:10.1016/j.carbpol.2012.06.020

    CAS  Article  Google Scholar 

  41. 41.

    Lopes WA, Fascio M (2004) Flow chart for infrared spectra interpretation of organic compounds. Quim Nova 27:670–673

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the services provided by the Laboratory of Mass Transfer (LABMASSA), Laboratory of Process Control (LCP) to the Central Laboratory of Electronic Microscopy (LCME) and to the Central Laboratory of Chemical Analyses, all located at the Federal University of Santa Catarina (UFSC), for all the support of material and equipment for the execution of all the experimental tests of this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Débora de Oliveira.

Ethics declarations

Conflict of interest

The authors declare that for the execution of this study, there was no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Almeida, É.S., de Oliveira, D. & Hotza, D. Characterization of silver nanoparticles produced by biosynthesis mediated by Fusarium oxysporum under different processing conditions. Bioprocess Biosyst Eng 40, 1291–1303 (2017). https://doi.org/10.1007/s00449-017-1788-9

Download citation

Keywords

  • Nanotechnology
  • Biosynthesis
  • Silver nanoparticles
  • Fusarium oxysporum
  • Characterization
  • Stability