Skip to main content
Log in

Enhanced production of para-hydroxybenzoic acid by genetically engineered Saccharomyces cerevisiae

  • Rapid Communication
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Saccharomyces cerevisiae is a popular organism for metabolic engineering; however, studies aiming at over-production of bio-replacement precursors for the chemical industry often fail to overcome proof-of-concept stage. When intending to show real industrial attractiveness, the challenge is twofold: formation of the target compound must be increased, while minimizing the formation of side and by-products to maximize titer, rate and yield. To tackle these, the metabolism of the organism, as well as the parameters of the process, need to be optimized. Addressing both we show that S. cerevisiae is well-suited for over-production of aromatic compounds, which are valuable in chemical industry and are particularly useful in space technology. Specifically, a strain engineered to accumulate chorismate was optimized for formation of para-hydroxybenzoic acid. Then a fed-batch bioreactor process was developed, which delivered a final titer of 2.9 g/L, a maximum rate of 18.625 mgpHBA/(gCDW × h) and carbon-yields of up to 3.1 mgpHBA/gglucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. At t = 36 h, when cells were becoming stationary, which was approx. 12 h after the end of exponential growth, the remaining 22.8 mL of culture were spiked with 5 mL medium that contained 200 g/L glucose.

References

  1. Kuraray (2016) Kuraray Vectran™. http://www.vectranfiber.com/. Accessed 22 Feb 2017

  2. NASA (2002) Mars Exploration Rover. http://mars.nasa.gov/mer/mission/spacecraft_edl_airbags.html. Accessed 22 Feb 2017

  3. NASA (2016) Bigelow expandable activity module. https://www.nasa.gov/content/bigelow-expandable-activity-module. Accessed 22 Feb 2017

  4. Bigelow (2016) Bigelow aerospace | BEAM. http://www.bigelowaerospace.com/beam/. Accessed 22 Feb 2017

  5. Rothschild Lynn J (2016) Synthetic biology meets bioprinting: enabling technologies for humans on Mars (and Earth). Biochem Soc Trans 44(4):1158–1164. doi:10.1042/bst20160067

    Article  CAS  Google Scholar 

  6. Barker JL, Frost JW (2001) Microbial synthesis of p-hydroxybenzoic acid from glucose. Biotechnol Bioeng 76(4):376–390. doi:10.1002/bit.10160

    Article  CAS  Google Scholar 

  7. Verhoef S, Gao N, Ruijssenaars HJ, de Winde JH (2014) Crude glycerol as feedstock for the sustainable production of p-hydroxybenzoate by Pseudomonas putida S12. New Biotechnol 31(1):114–119. doi:10.1016/j.nbt.2013.08.006

    Article  CAS  Google Scholar 

  8. Verhoef S, Ruijssenaars HJ, de Bon JAM, Wery J (2007) Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12. J Biotechnol 132(1):49–56. doi:10.1016/j.jbiotec.2007.08.031

    Article  CAS  Google Scholar 

  9. Yu S, Plan MR, Winter G, Krömer JO (2016) Metabolic engineering of Pseudomonas putida KT2440 for the production of para-hydroxy benzoic acid. Front Bioeng Biotechnol. doi:10.3389/fbioe.2016.00090

    Google Scholar 

  10. Krömer JO, Nunez-Bernal D, Averesch NJ, Hampe J, Varela J, Varela C (2013) Production of aromatics in Saccharomyces cerevisiae—a feasibility study. J Biotechnol 163(2):184–193. doi:10.1016/j.jbiotec.2012.04.014

    Article  Google Scholar 

  11. Williams TC, Averesch NJ, Winter G, Plan MR, Vickers CE, Nielsen LK, Krömer JO (2015) Quorum-sensing linked RNA interference for dynamic metabolic pathway control in Saccharomyces cerevisiae. Metab Eng 29:124–134. doi:10.1016/j.ymben.2015.03.008

    Article  CAS  Google Scholar 

  12. Averesch NJH, Winter G, Krömer JO (2016) Production of para-aminobenzoic acid from different carbon-sources in engineered Saccharomyces cerevisiae. Microb Cell Fact 15(1):1–16. doi:10.1186/s12934-016-0485-8

    Article  Google Scholar 

  13. Holden MJ, Mayhew MP, Gallagher DT, Vilker VL (2002) Chorismate lyase: kinetics and engineering for stability. Biochim Biophys Acta 1594(1):160–167. doi:10.1016/S0167-4838(01)00302-8

    Article  CAS  Google Scholar 

  14. Partow S, Siewers V, Bjorn S, Nielsen J, Maury J (2010) Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast 27(11):955–964. doi:10.1002/yea.1806

    Article  CAS  Google Scholar 

  15. Averesch NJH (2016) Engineering yeast shikimate pathway towards production of aromatics: rational design of a chassis cell using systems and synthetic biology. Univ Qld. doi:10.14264/uql.2016.212

    Google Scholar 

  16. Verduyn C, Zomerdijk TPL, van Dijken JP, Scheffers WA (1984) Continuous measurement of ethanol production by aerobic yeast suspensions with an enzyme electrode. Appl Microbiol Biotechnol 19(3):181–185. doi:10.1007/BF00256451

    Article  CAS  Google Scholar 

  17. Postma E, Verduyn C, Scheffers WA, Van Dijken JP (1989) Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 55(2):468–477

    CAS  Google Scholar 

  18. Abbott DA, Zelle RM, Pronk JT, Van Maris AJA (2009) Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges. FEMS Yeast Res 9(8):1123–1136. doi:10.1111/j.1567-1364.2009.00537.x

    Article  CAS  Google Scholar 

  19. Lai B, Plan MR, Averesch NJH, Yu S, Kracke F, Lekieffre N, Bydder S, Hodson MP, Winter G, Krömer JO (2016) Quantitative analysis of aromatics for synthetic biology using liquid chromatography. Biotechnol J. doi:10.1002/biot.201600269

    Google Scholar 

  20. Duboc P, Von Stockar U (1998) Systematic errors in data evaluation due to ethanol stripping and water vaporization. Biotechnol Bioeng 58(4):428–439. doi:10.1002/(SICI)1097-0290(19980520)58

    Article  CAS  Google Scholar 

  21. Luttik MA, Vuralhan Z, Suir E, Braus GH, Pronk JT, Daran JM (2008) Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: quantification of metabolic impact. Metab Eng 10(3–4):141–153. doi:10.1016/j.ymben.2008.02.002

    Article  CAS  Google Scholar 

  22. Rodriguez A, Kildegaard KR, Li M, Borodina I, Nielsen J (2015) Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab Eng 31:181–188. doi:10.1016/j.ymben.2015.08.003

    Article  CAS  Google Scholar 

  23. Siebert M, Severin K, Heide L (1994) Formation of 4-hydroxybenzoate in Escherichia coli: characterization of the ubiC gene and its encoded enzyme chorismate pyruvate-lyase. Microbiology 140(4):897–904. doi:10.1099/00221287-140-4-897

    Article  CAS  Google Scholar 

  24. Winter G, Averesch NJ, Nunez-Bernal D, Krömer JO (2014) In vivo instability of chorismate causes substrate loss during fermentative production of aromatics. Yeast 31(9):333–341. doi:10.1002/yea.3025

    Article  CAS  Google Scholar 

  25. Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488(7411):320–328. doi:10.1038/nature11478

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Australian Research Council (DE120101549). We acknowledge the services of Metabolomics Australia for the analysis of metabolite concentrations, especially Dr. Manuel Plan. We also thank Dr. Gal Winter for support in the early stages of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils J. H. Averesch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Averesch, N.J.H., Prima, A. & Krömer, J.O. Enhanced production of para-hydroxybenzoic acid by genetically engineered Saccharomyces cerevisiae . Bioprocess Biosyst Eng 40, 1283–1289 (2017). https://doi.org/10.1007/s00449-017-1785-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1785-z

Keywords

Navigation