Skip to main content
Log in

Enantioselective resolution of racemic flurbiprofen methyl ester by lipase encapsulated mercapto calix[4]arenes capped Fe3O4 nanoparticles

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This work presents the synthesis of new mercapto calix[4]arenes derivatives (4 and 5). These derivatives were capped on Fe3O4 magnetic nanoparticles and subsequently encapsulated with Candida rugosa through sol–gel method to furnish enc-4 and enc-5, respectively, to enhance catalytic activity and enantioselectivity of lipase for hydrolysis reaction of racemic flurbiprofen methyl ester. Catalytic activity and enantioselectivity of enc-4 and enc-5 were assayed at different pH and temperature conditions and it was found that the resultant encapsulated enzyme exhibited higher thermal and operational stabilities compared to the free lipase in which enc-5 showed the excellent rate of enantioselectivity (E = 176) for S-flurbiprofen better than free lipase (E = 137) at pH 7 and 35 °C for 48 h. The time study shows that enantioselectivity reached the maximum value of E = 244 after 72 h. Catalytic activity  of these materials was hardly affected by 20 and 23% after five usages of enc-4 and enc-5, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Grösch S, Schilling K, Janssen A, Maier TJ, Niederberger E, Geisslinger G (2005) Induction of apoptosis by R-flurbiprofen in human colon carcinoma cells: involvement of p53. Biochem Pharmacol 69(5):831–839

    Article  Google Scholar 

  2. Murali Mohan Babu G, Prasad CD, Himasankar K, Gourishankar V, Kumar NK, Ramana Murthy K (2002) Development of new controlled release formulation of flurbiprofen: in vitro-in vivo correlation. Indian J Pharm Sci 64(1):37–43

    Google Scholar 

  3. Muraoka A, Tokumura T, Machida Y (2004) Evaluation of the bioavailability of flurbiprofen and its β-cyclodextrin inclusion complex in four different doses upon oral administration to rats. Eur J Pharm Biopharm 58(3):667–671

    Article  CAS  Google Scholar 

  4. Williams R, Jeffcoat M, Kaplan M, Goldhaber P, Johnson H, Wechter W (1985) Flurbiprofen: a potent inhibitor of alveolar bone resorption in beagles. Science 227(4687):640–642

    Article  CAS  Google Scholar 

  5. Eriksen JL, Sagi SA, Smith TE, Weggen S, Das P, McLendon D, Ozols VV, Jessing KW, Zavitz KH, Koo EH (2003) NSAIDs and enantiomers of flurbiprofen target γ-secretase and lower Aβ42 in vivo. J Clin Investig 112(3):440–449

    Article  CAS  Google Scholar 

  6. Uchino T, Matsumoto Y, Murata A, Oka T, Miyazaki Y, Kagawa Y (2014) Transdermal delivery of flurbiprofen from surfactant-based vesicles: particle characterization and the effect of water on in vitro transport. Int J Pharm 464(1):75–84

    Article  CAS  Google Scholar 

  7. Pignatello R, Bucolo C, Spedalieri G, Maltese A, Puglisi G (2002) Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application. Biomaterials 23(15):3247–3255

    Article  CAS  Google Scholar 

  8. Rousseau A, Chiap P, Ivanyi R, Crommen J, Fillet M, Servais A-C (2008) Validation of a nonaqueous capillary electrophoretic method for the enantiomeric purity determination of R-flurbiprofen using a single-isomer amino cyclodextrin derivative. J Chromatogr A 1204(2):219–225

    Article  CAS  Google Scholar 

  9. Białońska A, Ciunik Z (2004) Racemic resolution of N-protected alanine by strychnine and brucine versus donor/acceptor capability. CrystEngComm 6(47):276–279

    Article  Google Scholar 

  10. Wulff G, Poll HG (1987) Enzyme-analogue built polymers, 23. Influence of the structure of the binding sites on the selectivity for racemic resolution. Die. Makromol Chem 188(4):741–748

    Article  CAS  Google Scholar 

  11. Ranjbakhsh E, Bordbar A, Abbasi M, Khosropour A, Shams E (2012) Enhancement of stability and catalytic activity of immobilized lipase on silica-coated modified magnetite nanoparticles. Chem Eng J 179:272–276

    Article  CAS  Google Scholar 

  12. Zhang D-H, Zhang Y-F, Zhi G-Y, Xie Y-L (2011) Effect of hydrophobic/hydrophilic characteristics of magnetic microspheres on the immobilization of BSA. Colloids Surf B 82(2):302–306. doi:10.1016/j.colsurfb.2010.09.001

    Article  CAS  Google Scholar 

  13. Andrade LH, Rebelo LP, Netto CGCM, Toma HE (2010) Kinetic resolution of a drug precursor by Burkholderia cepacia lipase immobilized by different methodologies on superparamagnetic nanoparticles. J Mol Catal B Enzym 66(1–2):55–62. doi:10.1016/j.molcatb.2010.03.002

    Article  CAS  Google Scholar 

  14. Köse Ö, Tüter M, Aksoy HA (2002) Immobilized Candida antarctica lipase-catalyzed alcoholysis of cotton seed oil in a solvent-free medium. Bioresour Technol 83(2):125–129. doi:10.1016/S0960-8524(01)00203-6

    Article  Google Scholar 

  15. Chang SW, Shaw JF, Yang KH, Chang SF, Shieh CJ (2008) Studies of optimum conditions for covalent immobilization of Candida rugosa lipase on poly(γ-glutamic acid) by RSM. Bioresour Technol 99(8):2800–2805. doi:10.1016/j.biortech.2007.06.020

    Article  CAS  Google Scholar 

  16. Dlugy C, Wolfson A (2007) Lipase catalyse glycerolysis for kinetic resolution of racemates. Bioproc Biosyst Eng 30(5):327–330. doi:10.1007/s00449-007-0128-x

    Article  CAS  Google Scholar 

  17. Houde A, Kademi A, Leblanc D (2004) Lipases and their industrial applications. Appl Biochem Biotechnol 118(1–3):155–170

    Article  CAS  Google Scholar 

  18. Sayin S, Yilmaz E, Yilmaz M (2011) Improvement of catalytic properties of Candida Rugosa lipase by sol–gel encapsulation in the presence of magnetic calix[4]arene nanoparticles. Org Biomol Chem 9(11):4021–4024. doi:10.1039/c1ob05115f

    Article  CAS  Google Scholar 

  19. Uyanik A, Sen N, Yilmaz M (2016) Enhancing effect of calix[4]arene amide derivatives on lipase performance in enantioselective hydrolysis of racemic arylpropionic acid methyl esters. Polycycl Aromat Comp 36(5):613–627. doi:10.1080/10406638.2015.1037005

    Article  CAS  Google Scholar 

  20. Sayin S, Yilmaz M (2014) Bronsted acidic magnetic nano-Fe3O4-adorned calix[n]arene sulfonic acids: synthesis and application in the nucleophilic substitution of alcohols. Tetrahedron 70(37):6669–6676. doi:10.1016/j.tet.2014.06.034

    Article  CAS  Google Scholar 

  21. Akceylan E, Uyanik A, Eymur S, Sahin O, Yilmaz M (2015) Calixarene-proline functionalized iron oxide magnetite nanoparticles (Calix-Pro-MN): an efficient recyclable organocatalyst for asymmetric aldol reaction in water. Appl Catal a-Gen 499:205–212. doi:10.1016/j.apcata.2015.04.018

    Article  CAS  Google Scholar 

  22. Reetz MT, Tielmann P, Wiesenhöfer W, Könen W, Zonta A (2003) Second generation sol–gel encapsulated lipases: robust heterogeneous biocatalysts. Adv Synth Catal 345(6–7):717–728

    Article  CAS  Google Scholar 

  23. Yilmaz E, Sezgin M, Yilmaz M (2011) Immobilization of Candida rugosa lipase on magnetic sol–gel composite supports for enzymatic resolution of (R, S)-naproxen methyl ester. J Mol Catal B Enzym 69(1):35–41

    Article  CAS  Google Scholar 

  24. Sayin S, Akoz E, Yilmaz M (2014) Enhanced catalysis and enantioselective resolution of racemic naproxen methyl ester by lipase encapsulated within iron oxide nanoparticles coated with calix[8]arene valeric acid complexes. Org Biomol Chem 12(34):6634–6642. doi:10.1039/c4ob01048e

    Article  CAS  Google Scholar 

  25. Uyanik A, Sen N, Yilmaz M (2011) Improvement of catalytic activity of lipase from Candida rugosa via sol–gel encapsulation in the presence of calix(aza)crown. Bioresource Technol 102(6):4313–4318. doi:10.1016/j.biortech.2010.12.105

    Article  CAS  Google Scholar 

  26. Ozyilmaz E, Sayin S (2013) Preparation of new calix [4] arene-immobilized biopolymers for enhancing catalytic properties of Candida rugosa lipase by sol–gel encapsulation. Appl Biochem Biotechnol 170(8):1871–1884

    Article  CAS  Google Scholar 

  27. Sahin O, Erdemir S, Uyanik A, Yilmaz M (2009) Enantioselective hydrolysis of (R/S)-naproxen methyl ester with sol–gel encapculated lipase in presence of calix[n]arene derivatives. Appl Catal A 369(1):36–41

    Article  CAS  Google Scholar 

  28. Itoh T, Mitsukura K, Kanphai W, Takagi Y, Kihara H, Tsukube H (1997) Thiacrown ether technology in lipase-catalyzed reaction: scope and limitation for preparing optically active 3-hydroxyalkanenitriles and application to insect pheromone synthesis. J Org Chem 62(26):9165–9172

    Article  CAS  Google Scholar 

  29. Fadnavis N, Babu RL, Vadivel SK, Deshpande AA, Bhalerao U (1998) Lipase catalyzed regio-and stereospecific hydrolysis: chemoenzymatic synthesis of both (R)- and (S)-enantiomers of α-lipoic acid. Tetrahedron Asymmetry 9(23):4109–4112

    Article  CAS  Google Scholar 

  30. Wu J-Y, Liu S-W (2000) Influence of alcohol concentration on lipase-catalyzed enantioselective esterification of racemic naproxen in isooctane: under controlled water activity. Enzyme Microb Technol 26(2):124–130

    Article  CAS  Google Scholar 

  31. Collins EM, McKervey MA, Madigan E, Moran MB, Owens M, Ferguson G, Harris SJ (1991) Chemically modified calix [4]arenes. Regioselective synthesis of 1, 3-(distal) derivatives and related compounds. X-Ray crystal structure of a diphenol-dinitrile. J Chem Soc Perkin Trans 1(12):3137–3142

    Article  Google Scholar 

  32. Gutsche CD, Iqbal M, Stewart D (1986) Calixarenes. 19. Syntheses procedures for p-tert-butylcalix [4] arene. J Org Chem 51(5):742–745

    Article  CAS  Google Scholar 

  33. Xu W, Li J-S, Feng Y-Q, Da S-L, Chen Y-Y, Xiao X-Z (1998) Preparation and characterization ofp-tert-butyl-calix [6] arene-bonded silica gel stationary phase for high-performance liquid chromatography. Chromatographia 48(3–4):245–250

    Article  CAS  Google Scholar 

  34. Maity D, Chakraborty A, Gunupuru R, Paul P (2011) Calix[4]arene based molecular sensors with pyrene as fluoregenic unit: effect of solvent in ion selectivity and colorimetric detection of fluoride. Inorg Chim Acta 372(1):126–135. doi:10.1016/j.ica.2011.01.053

    Article  CAS  Google Scholar 

  35. Fu Y-Q, Li Z-C, Ding L-N, Tao J-C, Zhang S-H, Tang M-S (2006) Direct asymmetric aldol reaction catalyzed by simple prolinamide phenols. Tetrahedron Asymmetry 17(24):3351–3357. doi:10.1016/j.tetasy.2006.12.008

    Article  CAS  Google Scholar 

  36. Akoz E, Erdemir S, Yilmaz M (2012) Immobilization of novel the semicarbazone derivatives of calix[4]arene onto magnetite nanoparticles for removal of Cr(VI) ion. J Incl Phenom Macro 73(1–4):449–458. doi:10.1007/s10847-011-0083-7

    Article  CAS  Google Scholar 

  37. Sayin S, Yilmaz M (2011) Preparation and uranyl ion extraction studies of calix[4]arene-based magnetite nanoparticles. Desalination 276(1–3):328–335. doi:10.1016/j.desal.2011.03.073

    Article  CAS  Google Scholar 

  38. Chiou S-H, Wu W-T (2004) Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials 25(2):197–204

    Article  CAS  Google Scholar 

  39. Bonnet M, Leroux C, Chilliard Y, Martin P (2001) A fluorescent reverse transcription—polymerase chain reaction assay to quantify the lipoprotein lipase messenger RNA. Mol Cell Probes 15(4):187–194

    Article  CAS  Google Scholar 

  40. Chen CS, Fujimoto Y, Girdaukas G, Sih CJ (1982) Quantitative analyses of biochemical kinetic resolutions of enantiomers. J Am Chem Soc 104(25):7294–7299

    Article  CAS  Google Scholar 

  41. Zhu S, Wu Y, Yu Z (2005) Immobilization of Candida rugosa lipase on a pH-sensitive support for enantioselective hydrolysis of ketoprofen ester. J Biotechnol 116(4):397–401

    Article  Google Scholar 

  42. Aktas M, Uyanik A, Eymur S, Yilmaz M (2016) l-Proline derivatives based on a calix[4]arene scaffold as chiral organocatalysts for the direct asymmetric aldol reaction in water. Supramol Chem 28(5–6):351–359. doi:10.1080/10610278.2015.1073288

    Article  CAS  Google Scholar 

  43. Pereira EB, De Castro HF, De Moraes FF, Zanin GM (2001) Kinetic studies of lipase from Candida rugosa. Appl Biochem Biotechnol 91(1–9):739–752

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank The Research Foundation of Selcuk University (BAP) for their financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Yilmaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 295 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildiz, H., Ozyilmaz, E., Bhatti, A.A. et al. Enantioselective resolution of racemic flurbiprofen methyl ester by lipase encapsulated mercapto calix[4]arenes capped Fe3O4 nanoparticles. Bioprocess Biosyst Eng 40, 1189–1196 (2017). https://doi.org/10.1007/s00449-017-1779-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1779-x

Keywords

Navigation