Electricity generation from real industrial wastewater using a single-chamber air cathode microbial fuel cell with an activated carbon anode

Abstract

This study introduces activated carbon (AC) as an effective anode for microbial fuel cells (MFCs) using real industrial wastewater without treatment or addition of external microorganism mediators. Inexpensive activated carbon is introduced as a proper electrode alternative to carbon cloth and carbon paper materials, which are considered too expensive for the large-scale application of MFCs. AC has a porous interconnected structure with a high bio-available surface area. The large surface area, in addition to the high macro porosity, facilitates the high performance by reducing electron transfer resistance. Extensive characterization, including surface morphology, material chemistry, surface area, mechanical strength and biofilm adhesion, was conducted to confirm the effectiveness of the AC material as an anode in MFCs. The electrochemical performance of AC was also compared to other anodes, i.e., Teflon-treated carbon cloth (CCT), Teflon-treated carbon paper (CPT), untreated carbon cloth (CC) and untreated carbon paper (CP). Initial tests of a single air-cathode MFC display a current density of 1792 mAm−2, which is approximately four times greater than the maximum value of the other anode materials. COD analyses and Coulombic efficiency (CE) measurements for AC-MFC show the greatest removal of organic compounds and the highest CE efficiency (60 and 71%, respectively). Overall, this study shows a new economical technique for power generation from real industrial wastewater with no treatment and using inexpensive electrode materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Blanco J, Malato S, Fernández-Ibañez P, Alarcón D, Gernjak W, Maldonado M (2009) Review of feasible solar energy applications to water processes. Renew Sustain Energy Rev 13:1437–1445

    CAS  Article  Google Scholar 

  2. 2.

    Wetser K, Sudirjo E, Buisman CJ, Strik DP (2015) Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode. Appl Energy 137:151–157

    CAS  Article  Google Scholar 

  3. 3.

    Pandey P, Shinde VN, Deopurkar RL, Kale SP, Patil SA, Pant D (2016) Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl Energy 168:706–723

    CAS  Article  Google Scholar 

  4. 4.

    Pham T, Rabaey K, Aelterman P, Clauwaert P, De Schamphelaire L, Boon N, Verstraete W (2006) Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci 6:285–292

    CAS  Article  Google Scholar 

  5. 5.

    Kim JR, Min B, Logan BE (2005) Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl Microbiol Biotechnol 68:23–30

    CAS  Article  Google Scholar 

  6. 6.

    Poddar S, Khurana S (2011) Geobacter: the electric microbe! Efficient microbial fuel cells to generate clean, cheap electricity. Indian J Microbiol 51:240

    Article  Google Scholar 

  7. 7.

    Moon H, Chang IS, Kim BH (2006) Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Biores Technol 97:621–627

    CAS  Article  Google Scholar 

  8. 8.

    Gil G-C, Chang I-S, Kim BH, Kim M, Jang J-K, Park HS, Kim HJ (2003) Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens Bioelectron 18:327–334

    CAS  Article  Google Scholar 

  9. 9.

    Li Y, Williams I, Xu Z, Li B, Li B (2016) Energy-positive nitrogen removal using the integrated short-cut nitrification and autotrophic denitrification microbial fuel cells (MFCs). Appl Energy 163:352–360

    CAS  Article  Google Scholar 

  10. 10.

    He H, Zhou M, Yang J, Hu Y, Zhao Y (2014) Simultaneous wastewater treatment, electricity generation and biomass production by an immobilized photosynthetic algal microbial fuel cell. Bioprocess Biosyst Eng 37:873–880

    CAS  Article  Google Scholar 

  11. 11.

    Baranitharan E, Khan MR, Prasad DMR, Teo WFA, Tan GYA, Jose R (2015) Effect of biofilm formation on the performance of microbial fuel cell for the treatment of palm oil mill effluent. Bioprocess Biosyst Eng 38:15–24

    CAS  Article  Google Scholar 

  12. 12.

    Qiao Y, Bao S-J, Li CM (2010) Electrocatalysis in microbial fuel cells—from electrode material to direct electrochemistry. Energy Environ Sci 3:544–553

    CAS  Article  Google Scholar 

  13. 13.

    Mohamed HO, Obaid M, Khalil KA, Barakat NA (2016) Power generation from unconditioned industrial wastewaters using commercial membranes-based microbial fuel cells. Int J Hydrogen Energy 41:4251–4263

    CAS  Article  Google Scholar 

  14. 14.

    Kim M, Cha J, Yu J, Kim C (2016) Stackable and submergible microbial fuel cell modules for wastewater treatment. Bioprocess Biosyst Eng 39:1191–1199

    CAS  Article  Google Scholar 

  15. 15.

    Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    CAS  Article  Google Scholar 

  16. 16.

    Logan BE, Regan JM (2006) Microbial fuel cells-challenges and applications. Environ Sci Technol 40:5172–5180

    CAS  Article  Google Scholar 

  17. 17.

    Zhu N, Chen X, Zhang T, Wu P, Li P, Wu J (2011) Improved performance of membrane free single-chamber air–cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes. Bioresour Technol 102:422–426

    CAS  Article  Google Scholar 

  18. 18.

    Adeniran J, Huberts R, De-Koker J, Arotiba O, Olorundare O, Van-Zyl E, Du-Plessis S (2016) Energy generation from domestic wastewater using sandwich dual-chamber microbial fuel cell with mesh current collector cathode. Int J Environ Sci Technol 13:2209–2218

    CAS  Article  Google Scholar 

  19. 19.

    Wei J, Liang P, Huang X (2011) Recent progress in electrodes for microbial fuel cells. Bioresour Technol 102:9335–9344

    CAS  Article  Google Scholar 

  20. 20.

    Xiao L, Damien J, Luo J, Jang HD, Huang J, He Z (2012) Crumpled graphene particles for microbial fuel cell electrodes. J Power Sources 208:187–192

    CAS  Article  Google Scholar 

  21. 21.

    Logan B, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in air–cathode microbial fuel cells. Environ Sci Technol 41:3341–3346

    CAS  Article  Google Scholar 

  22. 22.

    Zhang F, Cheng S, Pant D, Van Bogaert G, Logan BE (2009) Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochem Commun 11:2177–2179

    CAS  Article  Google Scholar 

  23. 23.

    Jiang D, Li B (2009) Granular activated carbon single-chamber microbial fuel cells (GAC-SCMFCs): a design suitable for large-scale wastewater treatment processes. Biochem Eng J 47:31–37

    CAS  Article  Google Scholar 

  24. 24.

    Logan BE (2007) Microbial fuel cells. Wiley, New Jersey

    Book  Google Scholar 

  25. 25.

    Liu CK, Lai K, Liu W, Yao M, Sun RJ (2009) Preparation of carbon nanofibres through electrospinning and thermal treatment. Polym Int 58:1341–1349

    CAS  Article  Google Scholar 

  26. 26.

    Paul P (2009) Value Added Products from Gasification Activated Carbon. Combustion Gasification and Propulsion Laboratory Department of Aerospace Engineering Indian Institute of Science, Bangalore

  27. 27.

    Smith L, Ma P (2004) Nano-fibrous scaffolds for tissue engineering. Colloids Surf B 39:125–131

    CAS  Article  Google Scholar 

  28. 28.

    Zhao F, Rahunen N, Varcoe JR, Chandra A, Avignone-Rossa C, Thumser AE, Slade RC (2008) Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environ Sci Technol 42:4971–4976

    CAS  Article  Google Scholar 

  29. 29.

    Chambrion P, Suzuki T, Zhang Z-G, Kyotani T, Tomita A (1997) XPS of nitrogen-containing functional groups formed during the C–NO reaction. Energy Fuels 11:681–685

    CAS  Article  Google Scholar 

  30. 30.

    Jansen R, Van Bekkum H (1995) XPS of nitrogen-containing functional groups on activated carbon. Carbon 33:1021–1027

    CAS  Article  Google Scholar 

  31. 31.

    Li B, Zhou J, Zhou X, Wang X, Li B, Santoro C, Grattieri M, Babanova S, Artyushkova K, Atanassov P (2014) Surface modification of microbial fuel cells anodes: approaches to practical design. Electrochim Acta 134:116–126

    CAS  Article  Google Scholar 

  32. 32.

    Liu H, Logan BE (2004) Electricity generation using an air–cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38:4040–4046

    CAS  Article  Google Scholar 

  33. 33.

    Kim JR, Zuo Y, Regan JM, Logan BE (2008) Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater. Biotechnol Bioeng 99:1120–1127

    CAS  Article  Google Scholar 

  34. 34.

    Liu H, Ramnarayanan R, Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38:2281–2285

    CAS  Article  Google Scholar 

  35. 35.

    Liu H, Cheng S, Logan BE (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39:658–662

    CAS  Article  Google Scholar 

  36. 36.

    Sayed ET, Tsujiguchi T, Nakagawa N (2012) Catalytic activity of baker’s yeast in a mediatorless microbial fuel cell. Bioelectrochemistry 86:97–101

    CAS  Article  Google Scholar 

  37. 37.

    Zuo Y, Cheng S, Logan BE (2008) Ion exchange membrane cathodes for scalable microbial fuel cells. Environ Sci Technol 42:6967–6972

    CAS  Article  Google Scholar 

  38. 38.

    Kasem ET, Tsujiguchi T, Nakagawa N (2013) Effect of metal modification to carbon paper anodes on the performance of yeast-based microbial fuel cells part ΙΙ: in the case with exogenous mediator, methylene blue. Key Eng Mater 534:82–87. doi:10.4028/www.scientific.net/KEM.534.82

    Article  Google Scholar 

  39. 39.

    Hoogers G (2002) Fuel cell technology handbook. CRC Press

  40. 40.

    Larminie J, Dicks A, McDonald MS (2003) Fuel cell systems explained. Wiley, Chichester, UK

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MISP) (Grant Number 2014R1A4A1008140).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Mira Park or Nasser A. M. Barakat or Hak Yong Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3160 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohamed, H.O., Obaid, M., Sayed, E.T. et al. Electricity generation from real industrial wastewater using a single-chamber air cathode microbial fuel cell with an activated carbon anode. Bioprocess Biosyst Eng 40, 1151–1161 (2017). https://doi.org/10.1007/s00449-017-1776-0

Download citation

Keywords

  • Microbial fuel cell
  • Real industrial wastewater
  • Anode materials
  • Activated carbon