Hyper-thermal acid hydrolysis and adsorption treatment of red seaweed, Gelidium amansii for butyric acid production with pH control

Abstract

Optimal hyper-thermal (HT) acid hydrolysis conditions for Gelidium amansii were determined to be 12% (w/v) seaweed slurry content and 144 mM H2SO4 at 150 °C for 10 min. HT acid hydrolysis-treated G. amansii hydrolysates produced low concentrations of inhibitory compounds and adsorption treatment using 3% activated carbon. An adsorption time of 5 min was subsequently used to remove the inhibitory 5-hydroxymethylfurfural from the medium. A final maximum monosaccharide concentration of 44.6 g/L and 79.1% conversion from 56.4 g/L total fermentable monosaccharides with 120 g dw/L G. amansii slurry was obtained from HT acid hydrolysis, enzymatic saccharification, and adsorption treatment. This study demonstrates the potential for butyric acid production from G. amansii hydrolysates under non-pH-controlled as well as pH-controlled fermentation using Clostridium acetobutylicum KCTC 1790. The activated carbon treatment and pH-controlled fermentation showed synergistic effects and produced butyric acid at a concentration of 11.2 g/L after 9 days of fermentation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Zhang CH, Ma YJ, Yang FX, Liu W, Zhang YD (2009) Optimization of medium composition for butyric acid production by Clostridium thermobutyricum using response surface methodology. Bioresour Technol 100:4284–4288

    CAS  Article  Google Scholar 

  2. 2.

    Huang J, Cai J, Wang J, Zhu XC, Huang L, Yang ST, Xu Z (2011) Efficient production of butyric acid from Jerusalem artichoke by immobilized Clostridium tyrobutyricum in a fibrous-bed bioreactor. Bioresour Technol 102:3923–3926

    CAS  Article  Google Scholar 

  3. 3.

    Huesemann MH, Kuo LJ, Urquhart LS, Gill GA, Roesijadi G (2012) Acetone-butanol fermentation of marine macroalgae. Bioresour Technol 108:305–309

    CAS  Article  Google Scholar 

  4. 4.

    Song JH, Ventura JRS, Lee CH, Jahng D (2011) Butyric acid production from brown algae using Clostridium tyrobutyricum ATCC 25755. Biotechnol Bioproc E 16:42–49

    CAS  Article  Google Scholar 

  5. 5.

    Wei D, Liu XG, Yang ST (2013) Butyric acid production from sugarcane bagasse hydrolysate by Clostridium tyrobutyricum immobilized in a fibrous-bed bioreactor. Bioresour Technol 129:553–560

    CAS  Article  Google Scholar 

  6. 6.

    Park JH, Hong JY, Jang HC, Oh SG, Kim SH, Yoon JJ, Kim YJ (2012) Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour Technol 108:83–88

    CAS  Article  Google Scholar 

  7. 7.

    Qureshi N, Bowman MJ, Saha BC, Hector R, Berhow MA, Cotta MA (2012) Effect of cellulosic sugar degradation products (furfural and hydroxymethy furfural) on acetone-butanol-ethanol (ABE) fermentation using Clostridium beijerinckii P260. Food Bioprod Process 90:533–540

    CAS  Article  Google Scholar 

  8. 8.

    Jeong TS, Choi CH, Lee JY, Oh KK (2012) Behaviors of glucose decomposition during acid-catalyzed hydrothermal hydrolysis of pretreated Gelidium amansii. Bioresour Technol 116:435–440

    CAS  Article  Google Scholar 

  9. 9.

    Lee JM, Venditti RA, Jameel H, Kenealy WR (2011) Detoxification of woody hydrolyzates with activated carbon for bioconversion to ethanol by the thermophilic anaerobic bacterium Thermoanaerobacterium saccharolyticum. Biomass Bioenergy 35:626–636

    CAS  Article  Google Scholar 

  10. 10.

    Li SY, Srivastava R, Suib SL, Li Y, Parnas RS (2011) Performance of batch, fed-batch, and continuous ABE fermentation with pH-control. Bioresour Technol 102:4241–4250

    CAS  Article  Google Scholar 

  11. 11.

    Zhu Y, Yang ST (2004) Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. J Biotechnol 110:143–157

    CAS  Article  Google Scholar 

  12. 12.

    Sanchez-Machado DI, Lopez-Cervantes J, Paseiro-Losada P, Lopez-Hernandez J (2004) Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem 85:439–444

    CAS  Article  Google Scholar 

  13. 13.

    Irfan M, Nadeem M, Syed Q (2014) One-factor-at-time (OFAT) optimization of xylanase production from Trichoderma viride-IR05 in solid-state fermentation. J Radiat Res Appl Sci 7:317–326

    Article  Google Scholar 

  14. 14.

    Chum H, Johnson D, Black S, Overend R (1990) Pretreatment-catalyst effects and the combined severity parameter. Appl Biochem Biotechnol 24:1–14

    Article  Google Scholar 

  15. 15.

    Lloyd TA, Wyman CE (2005) Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour Technol 96:1967–1977

    CAS  Article  Google Scholar 

  16. 16.

    Mandels M, Andreotti R, Roche C (1976) Measurement of saccharifying cellulase. Biotenchnol Bioeng Symp 6:21–23

    CAS  Google Scholar 

  17. 17.

    Kubicek CP (1982) β-Glucosidase excretion by Trichoderma pseudokoningii: correlation with cell wall bound β-1,3-glucanase activities. Arch Microbiol 132:349–354

    CAS  Article  Google Scholar 

  18. 18.

    Jol CN, Neiss TG, Penninkhof B, Rudolph B, De Ruiter GA (1999) A novel high-performance anion-exchange chromatographic method for the analysis of carrageenans and agars containing 3,6-anhydrogalactose. Anal Biochem 268:213–222

    CAS  Article  Google Scholar 

  19. 19.

    Jeong GT, Ra CH, Hong KY, Kim JK, Kong IS, Kim SK, Park DH (2015) Conversion of red-algae Gracilaria verrucosa to sugars, levulinic acid and 5-hydroxymethylfurfural. Bioprocess Biosyst Eng 38:207–217

    CAS  Article  Google Scholar 

  20. 20.

    Kim DH, Lee SG, Jeong GT (2014) Production of reducing sugar from Enteromorpha intestinalis by hydrothermal and enzymatic hydrolysis. Bioresour Technol 161:348–353

    CAS  Article  Google Scholar 

  21. 21.

    Kupiainen L, Ahola J, Tanskanen J (2011) Kinetics of glucose decomposition in formic acid. Chem Eng Res Des 8:2706–2713

    Article  Google Scholar 

  22. 22.

    Ahn DJ, Kim SK, Yun HS (2012) Optimization of pretreatment and saccharification for the production of bioethanol from water hyacinth by Saccharomyces cerevisiae. Bioprocess Biosyst Eng 35:35–41

    CAS  Article  Google Scholar 

  23. 23.

    Monot F, Engasser J, Petitdemange H (1984) Influence of pH and undissociated butyric acid on the production of acetone and butanol in batch cultures of Clostridium acetobutylicum. Appl Microbiol Biotechnol 19:422–426

    CAS  Article  Google Scholar 

  24. 24.

    Roos JW, Mclaughlin JK, Papoutsakis ET (1985) The effect of pH on nitrogen supply, cell lysis, and solvent production in fermentations of Clostridium acetobutylicum. Biotechnol Bioeng 27:681–694

    CAS  Article  Google Scholar 

  25. 25.

    Zhu Y, Yang ST (2004) Effect of pH on metabolic pathway shift in butyric acid fermentation by Clostridium tyrobutyricum. J Biotechnol 110:143–157

    CAS  Article  Google Scholar 

  26. 26.

    Liu S, Bischoff KM, Leathers TD, Qureshi N, Rich JO, Hughes SR (2013) Butyric acid from anaerobic fermentation of lignocellulosic biomass hydrolysates by Clostridium tyrobutyricum strain RPT-4213. Bioresour Technol 143:322–329

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1D1A1A09918683).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sung-Koo Kim.

Additional information

The English in this document has been checked by at least two professional editors both native speakers of English. For a certificate please see: http://www.textcheck.com/certificate/vvylfW.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ra, C.H., Jeong, GT. & Kim, SK. Hyper-thermal acid hydrolysis and adsorption treatment of red seaweed, Gelidium amansii for butyric acid production with pH control. Bioprocess Biosyst Eng 40, 403–411 (2017). https://doi.org/10.1007/s00449-016-1708-4

Download citation

Keywords

  • Butyric acid
  • 5-Hydroxymethylfurfural
  • Gelidium amansii
  • Clostridium acetobutylicum KCTC 1790