Abstract
Saline waste water from demineralization of cheese whey was used as the main component of waste saline medium (WSM) for cultivation of thraustochytrids. The suitability of WSM for cultivation of Schizochytrium limacinum PA-968 and Japonochytrium marinum AN-4 was evaluated by comparison with cultivation on nutrient medium (NM) in shake flask and fermenter cultures. Biomass productivities achieved in WSM for the thraustochytrids were comparable with those in NM for both shake flask and fermenter cultures. The maximum total lipid content (56.71% dry cell weight) and docosahexaenoic acid productivity (0.86 g/L/day) were achieved by J. marinum AN-4 grown on WSM in shake flask and fermenter cultures, respectively. A cost estimate of WSM suggests that this medium could result in lower production costs for thraustochytrid biomass and lipids and contribute to the effective reduction in saline diary process waste water.
This is a preview of subscription content, access via your institution.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.



References
- 1.
IDF (2010) The world dairy situation. Bulletin of the International Dairy Federation (446/2010), Brussels, Belgium, pp 181–182
- 2.
Diblíková L, Čurda L, Kinčl J (2013) The effect of dry matter and salt addition on cheese whey demineralisation. Int Dairy J. doi:10.1016/j.idairyj.2012.12.008
- 3.
Gernigon G, Schuck P, Jeantet R, Burling H (2011) Encyclopedia of dairy sciences, 2nd edn. Elsevier Applied Science, London
- 4.
Board WE (2015) World Register of Marine Species (WoRMS) http://www.marinespecies.org. Accessed 07 Sept 2016
- 5.
Honda D, Yokochi T, Nakahara T, Erata M, Higashihara T (1998) Schizochytrium limacinum sp. nov., a new thraustochytrid from a mangrove area in the west Pacific Ocean. Mycol Res. doi:10.1017/S0953756297005170
- 6.
Luy M, Rusing M (2007) Process for cultivating microorganisms of the genus Thraustochytriales. United States Patent, 13US 2007/0141686 A1
- 7.
Dewapriya P, S-k Kim (2014) Marine microorganisms: an emerging avenue in modern nutraceuticals and functional foods. Food Res Int. doi:10.1016/j.foodres.2013.12.022
- 8.
Lee Chang KJ, Nichols CM, Blackburn SI, Dunstan GA, Koutoulis A, Nichols PD (2014) Comparison of Thraustochytrids Aurantiochytrium sp., Schizochytrium sp., Thraustochytrium sp., and Ulkenia sp. for production of biodiesel, long-chain omega-3 oils, and exopolysaccharide. Mar Biotechnol. doi:10.1007/s10126-014-9560-5
- 9.
Singh P, Liu Y, Li L, Wang G (2014) Ecological dynamics and biotechnological implications of thraustochytrids from marine habitats. Appl Microbiol Biot. doi:10.1007/s00253-014-5780-x
- 10.
Chi Z, Pyle D, Wen Z, Frear C, Chen S (2007) A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem. doi:10.1016/j.procbio.2007.08.008
- 11.
Chang G, Gao N, Tian G, Wu Q, Chang M, Wang X (2013) Improvement of docosahexaenoic acid production on glycerol by Schizochytrium sp. S31 with constantly high oxygen transfer coefficient. Bioresour Technol. doi:10.1016/j.biortech.2013.04.107
- 12.
Pyle DJ, Garcia RA, Wen Z (2008) Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. J Agric Food Chem. doi:10.1021/jf800602s
- 13.
Ethier S, Woisard K, Vaughan D, Wen Z (2011) Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Bioresour Technol. doi:10.1016/j.biortech.2010.05.021
- 14.
Scott SD, Armenta RE, Berryman KT, Norman AW (2011) Use of raw glycerol to produce oil rich in polyunsaturated fatty acids by a thraustochytrid. Enzyme Microb Technol. doi:10.1016/j.enzmictec.2010.11.008
- 15.
Thyagarajan T, Puri M, Vongsvivut J, Barrow CJ (2014) Evaluation of bread crumbs as a potential carbon source for the growth of thraustochytrid species for oil and omega-3 production. Nutrients. doi:10.3390/nu6052104
- 16.
Quilodrán B, Hinzpeter I, Hormazabal E, Quiroz A, Shene C (2010) Docosahexaenoic acid (C22:6n-3, DHA) and astaxanthin production by Thraustochytriidae sp. AS4-A1 a native strain with high similitude to Ulkenia sp.: Evaluation of liquid residues from food industry as nutrient sources. Enzyme Microb Tech. doi:10.1016/j.enzmictec.2010.04.002
- 17.
Liang Y, Sarkany N, Cui Y, Yesuf J, Trushenski J, Blackburn JW (2010) Use of sweet sorghum juice for lipid production by Schizochytrium limacinum SR21. Bioresour Technol. doi:10.1016/j.biortech.2009.12.087
- 18.
Yamasaki T, Aki T, Shinozaki M, Taguchi M, Kawamoto S, Ono K (2006) Utilization of Shochu distillery wastewater for production of polyunsaturated fatty acids and xanthophylls using thraustochytrid. J Biosci Bioeng. doi:10.1263/jbb.102.323
- 19.
Shabala L, McMeekin T, Shabala S (2013) Thraustochytrids can be grown in low-salt media without affecting PUFA production. Mar Biotechnol. doi:10.1007/s10126-013-9499-y
- 20.
Tribe LA, Briens CL, Margaritis A (1995) Determination of the volumetric mass transfer coefficient (k(L)a) using the dynamic “gas out-gas in” method: analysis of errors caused by dissolved oxygen probes. Biotechnol Bioeng. doi:10.1002/bit.260460412
- 21.
Huang TY, Lu WC, Chu IM (2012) A fermentation strategy for producing docosahexaenoic acid in Aurantiochytrium limacinum SR21 and increasing C22:6 proportions in total fatty acid. Bioresour Technol. doi:10.1016/j.biortech.2012.07.068
- 22.
Qu L, Ren L-J, Huang H (2013) Scale-up of docosahexaenoic acid production in fed-batch fermentation by Schizochytrium sp. based on volumetric oxygen-transfer coefficient. Biochem Eng J. doi:10.1016/j.bej.2013.05.011
- 23.
Chi Z, Liu Y, Frear C, Chen S (2009) Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level. Appl Microbiol Biot. doi:10.1007/s00253-008-1740-7
- 24.
Song X, Zang X, Zhang X (2015) Production of high docosahexaenoic acid by Schizochytrium sp. using low-cost raw materials from food industry. J Oleo Sci. doi:10.5650/jos.ess14164
- 25.
Lowrey J, Armenta RE, Brooks MS (2016) Recycling of lipid-extracted hydrolysate as nitrogen supplementation for production of thraustochytrid biomass. J Ind Microbiol Biotechnol. doi:10.1007/s10295-016-1779-x
- 26.
Soydemir G, Keris-Sen UD, Sen U, Gurol MD (2016) Biodiesel production potential of mixed microalgal culture grown in domestic wastewater. Bioproc Biosyst Eng. doi:10.1007/s00449-015-1487-3
Acknowledgements
This work was supported by the Technology Agency of the Czech Republic through project TE01020080-BIORAF.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Humhal, T., Kastanek, P., Jezkova, Z. et al. Use of saline waste water from demineralization of cheese whey for cultivation of Schizochytrium limacinum PA-968 and Japonochytrium marinum AN-4. Bioprocess Biosyst Eng 40, 395–402 (2017). https://doi.org/10.1007/s00449-016-1707-5
Received:
Accepted:
Published:
Issue Date:
Keywords
- Saline waste water
- Schizochytrium limacinum
- Japonochytrium marinum
- Docosahexaenoic acid
- Shake flask
- Bioreactor