Bioprocess and Biosystems Engineering

, Volume 40, Issue 2, pp 161–180 | Cite as

High-throughput strategies for the discovery and engineering of enzymes for biocatalysis

  • Philippe Jacques
  • Max Béchet
  • Muriel Bigan
  • Delphine Caly
  • Gabrielle Chataigné
  • François Coutte
  • Christophe Flahaut
  • Egon Heuson
  • Valérie Leclère
  • Didier Lecouturier
  • Vincent Phalip
  • Rozenn Ravallec
  • Pascal Dhulster
  • Rénato Froidevaux
Mini Review


Innovations in novel enzyme discoveries impact upon a wide range of industries for which biocatalysis and biotransformations represent a great challenge, i.e., food industry, polymers and chemical industry. Key tools and technologies, such as bioinformatics tools to guide mutant library design, molecular biology tools to create mutants library, microfluidics/microplates, parallel miniscale bioreactors and mass spectrometry technologies to create high-throughput screening methods and experimental design tools for screening and optimization, allow to evolve the discovery, development and implementation of enzymes and whole cells in (bio)processes. These technological innovations are also accompanied by the development and implementation of clean and sustainable integrated processes to meet the growing needs of chemical, pharmaceutical, environmental and biorefinery industries. This review gives an overview of the benefits of high-throughput screening approach from the discovery and engineering of biocatalysts to cell culture for optimizing their production in integrated processes and their extraction/purification.


Biotechnologies Characterization Enzyme catalysis High-throughput screening 



The REALCAT platform benefits from a Governmental subvention administered by the French National Research Agency (ANR) within the frame of the ‘Future Investments’ program (PIA), with the contractual reference ‘ANR-11-EQPX-0037’. The Nord-Pas-de-Calais Region and the FEDER are thanked for their financial contribution to the acquisition of the equipment of the platform. The Université Lille 1 Sciences & Technologies (USTL) is also acknowledged for having financed a part of the consulting fees for designing the program and the Ecole Centrale de Lille (ECLille) is warmly thanks for their financial contribution necessary for the setup of the implantation laboratories. The consulting was entrusted to the ALMA Consulting Group, and we would like to warmly thank Drs Kosta Skarvelakis and Jetta Keranen for their professionalism and for having given us precious advice for making the project proposal a success, thanks to their deep expertise. ProBioGEM received financial support from the Université Lille 1, Sciences et Technologies, ARCIR funds from Nord-Pas-de-Calais, ANR (BtSurf) and the European Funds of INTERREG IV PhytoBio Project, ERA-IB MESIAB and ITN Marie Curie AMBER 317338.

Compliance with ethical standards

Conflict of interest

The authors declare no financial or commercial conflict of interest.


  1. 1.
    Singhania RR, Patel AK, Thomas L et al (2015) Industrial enzymes. In: Pandey A, Höfer R, Taherzadeh M et al (eds) Industrial biorefineries & white biotechnology. Elsevier, London, pp 473–497Google Scholar
  2. 2.
    Damborsky J, Brezovsky J (2013) ScienceDirect computational tools for designing and engineering enzymes. Curr Opin Chem Biol 19:8–16. doi: 10.1016/j.cbpa.2013.12.003
  3. 3.
    Heux S, Donohue MJO, Dumon C (2015) White biotechnology: state of the art strategies for the development of biocatalysts for biore fi ning. Biotechnol Adv 33:1653–1670. doi: 10.1016/j.biotechadv.2015.08.004 CrossRefGoogle Scholar
  4. 4.
    Tiwari MK, Singh R, Singh RK et al (2012) Computational approaches for rational design of proteins with novel functionalities structural, catalytic, sensory, and regulatory functions. Rational design of enzymes is a great challenge to our understanding of design or engineer proteins that fold. Comput Struct Biotechnol 2:1–13. doi: 10.5936/csbj.201209002 CrossRefGoogle Scholar
  5. 5.
    Wölcke J, Ullmann D (2001) Miniaturized HTS technologies—uHTS. Drug Discov Today 6:637–646. doi: 10.1016/S1359-6446(01)01807-4 CrossRefGoogle Scholar
  6. 6.
    Cacho RA, Tang Y, Chooi Y-H (2015) Next-generation sequencing approach for connecting secondary metabolites to biosynthetic gene clusters in fungi. Frontiers Microbiol 5:774. doi: 10.3389/fmicb.2014.00774 CrossRefGoogle Scholar
  7. 7.
    Weber T, Kim HU (2016) The secondary metabolite bioinformatics portal: computational tools to facilitate synthetic biology of secondary metabolite production. Synth Syst Biotechnol. doi: 10.1016/j.synbio.2015.12.002 Google Scholar
  8. 8.
    Medema MH, Kottmann R, Yilmaz P et al (2015) The minimum information about a biosynthetic gene cluster (MIBiG) specification. Nat Chem Biol 11:625–631. doi: 10.1038/nchembio.1890 CrossRefGoogle Scholar
  9. 9.
    Caradec T, Pupin M, Vanvlassenbroeck A et al (2014) Prediction of monomer isomery in florine: a workflow dedicated to nonribosomal peptide discovery. PLoS One. doi: 10.1371/journal.pone.0085667 Google Scholar
  10. 10.
    Leclère V, Weber T, Jacques P, Pupin M (2016) Bioinformatics tools for the discovery of new nonribosomal peptides. Methods in molecular biology (Clifton, NJ) 1401:209–232. doi: 10.1007/978-1-4939-3375-4_14
  11. 11.
    Flissi A, Dufresne Y, Michalik J et al (2015) Norine, the knowledgebase dedicated to non-ribosomal peptides, is now open to crowdsourcing. Nucleic Acids Res 44:D1113–D1118. doi: 10.1093/nar/gkv1143 CrossRefGoogle Scholar
  12. 12.
    Conway KR, Boddy CN (2013) ClusterMine360: a database of microbial PKS/NRPS biosynthesis. Nucleic Acids Res 41:402–407. doi: 10.1093/nar/gks993 CrossRefGoogle Scholar
  13. 13.
    Pupin M, Esmaeel Q, Flissi A et al (2015) Norine: a powerful resource for novel nonribosomal peptide discovery. Synth Syst Biotechnol. doi: 10.1016/j.synbio.2015.11.001 Google Scholar
  14. 14.
    Weber T, Blin K, Duddela S et al (2015) AntiSMASH 3. 0—a comprehensive resource for the genome mining of biosynthetic gene clusters. 43:237–243. doi: 10.1093/nar/gkv437
  15. 15.
    Starcevic A, Zucko J, Simunkovic J et al (2008) ClustScan: an integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel chemical structures. Nucleic Acids Res 36:6882–6892. doi: 10.1093/nar/gkn685 CrossRefGoogle Scholar
  16. 16.
    Khaldi N, Seifuddin FT, Turner G et al (2010) SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol 47:736–741. doi: 10.1016/j.fgb.2010.06.003 CrossRefGoogle Scholar
  17. 17.
    Esmaeel Q, Pupin M, Kieu NP et al (2016) Burkholderia genome mining for nonribosomal peptide synthetases reveals a great potential for novel siderophores and lipopeptides synthesis. MicrobiologyOpen. doi: 10.1002/mbo3.347 Google Scholar
  18. 18.
    Rohe P, Venkanna D, Kleine B et al (2012) An automated workflow for enhancing microbial bioprocess optimization on a novel microbioreactor platform. Microb Cell Fact 11:144. doi: 10.1186/1475-2859-11-144 CrossRefGoogle Scholar
  19. 19.
    Zhao J, Li Y, Zhang C et al (2012) Genome shuffling of Bacillus amyloliquefaciens for improving antimicrobial lipopeptide production and an analysis of relative gene expression using FQ RT-PCR. J Ind Microbiol Biotechnol 39:889–896. doi: 10.1007/s10295-012-1098-9 CrossRefGoogle Scholar
  20. 20.
    Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826. doi: 10.1126/science.1232033 CrossRefGoogle Scholar
  21. 21.
    Le Cong F, Ran A, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. doi: 10.1126/science.1231143 CrossRefGoogle Scholar
  22. 22.
    Mei Y, Wang Y, Chen H et al (2016) Recent progress in CRISPR/Cas9 technology. J Genet Genomics 43:63–75. doi: 10.1016/j.jgg.2016.01.001 CrossRefGoogle Scholar
  23. 23.
    Kanaar R, Wyman C, Rothstein R (2008) Quality control of DNA break metabolism: in the “end”, it’s a good thing. EMBO J 27:581–588. doi: 10.1038/emboj.2008.11 CrossRefGoogle Scholar
  24. 24.
    Jiang W, Bikard D, Cox D et al (2013) RNA-guided editing of bacterial genomes using CRISPR–Cas systems. Nat Biotechnol 31:233–239. doi: 10.1038/nbt.2508 CrossRefGoogle Scholar
  25. 25.
    Cobb RE, Wang Y, Zhao H (2014) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol. doi: 10.1021/sb500351f Google Scholar
  26. 26.
    Tong Y, Charusanti P, Zhang L et al (2015) CRISPR–Cas9 based engineering of actinomycetal genomes. ACS Synth Biol 4:1020–1029. doi: 10.1021/acssynbio.5b00038 CrossRefGoogle Scholar
  27. 27.
    Hodgkins A, Farne A, Perera S et al (2015) WGE: a CRISPR database for genome engineering. Bioinformatics 31:3078–3080. doi: 10.1093/bioinformatics/btv308 CrossRefGoogle Scholar
  28. 28.
    Xu H, Xiao T, Chen CH et al (2015) Sequence determinants of improved CRISPR sgRNA design. Genome Res 25:1147–1157. doi: 10.1101/gr.191452.115 CrossRefGoogle Scholar
  29. 29.
    Blin K, Pedersen LE, Weber T, Lee SY (2016) CRISPy-web: an online resource to design sgRNAs for CRISPR applications. Synth Syst Biotechnol. doi: 10.1016/j.synbio.2016.01.003 Google Scholar
  30. 30.
    Weber T, Blin K, Duddela S et al (2015) AntiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:1–7. doi: 10.1093/nar/gkv437 CrossRefGoogle Scholar
  31. 31.
    Bikard D, Euler CW, Jiang W et al (2014) Exploiting CRISPR–Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol 32:1146–1150. doi: 10.1038/nbt.3043 CrossRefGoogle Scholar
  32. 32.
    Citorik RJ, Mimee M, Lu TK (2014) Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 32:1141–1145. doi: 10.1038/nbt.3011 CrossRefGoogle Scholar
  33. 33.
    Beisel CL, Gomaa AA, Barrangou R (2014) A CRISPR design for next-generation antimicrobials. Genome Biol 15:516. doi: 10.1186/s13059-014-0516-x CrossRefGoogle Scholar
  34. 34.
    Peng J, Zhou Y, Zhu S, Wei W (2015) High-throughput screens in mammalian cells using the CRISPR–Cas9 system. FEBS J 282:2089–2096. doi: 10.1111/febs.13251 CrossRefGoogle Scholar
  35. 35.
    Shi J, Wang E, Milazzo JP et al (2015) Discovery of cancer drug targets by CRISPR–Cas9 screening of protein domains. Nat Biotechnol 33:1–10. doi: 10.1038/nbt.3235 CrossRefGoogle Scholar
  36. 36.
    Kilian KA, Moghe PV (2016) High throughput strategies for the design, discovery, and analysis of biomaterials. Acta Biomater 34:v–vi. doi: 10.1016/j.actbio.2016.03.019
  37. 37.
    Bertin PN, Heinrich-Salmeron A, Pelletier E et al (2011) Metabolic diversity among main microorganisms inside an arsenic-rich ecosystem revealed by meta- and proteo-genomics. ISME J 5:1735–1747. doi: 10.1038/ismej.2011.51 CrossRefGoogle Scholar
  38. 38.
    Piel J (2002) A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc Natl Acad Sci USA 99:14002–14007. doi: 10.1073/pnas.222481399 CrossRefGoogle Scholar
  39. 39.
    Wierzbicka-Woś A, Bartasun P, Cieśliński H et al (2013) Cloning and characterization of a novel cold-active glycoside hydrolase family 1 enzyme with β-glucosidase, β-fucosidase and β-galactosidase activities. BMC Biotechnol 13:22. doi: 10.1186/1472-6750-13-22 CrossRefGoogle Scholar
  40. 40.
    Schröder C, Elleuche S, Blank S, Antranikian G (2014) Characterization of a heat-active archaeal β-glucosidase from a hydrothermal spring metagenome. Enzyme Microb Technol 57:48–54. doi: 10.1016/j.enzmictec.2014.01.010 CrossRefGoogle Scholar
  41. 41.
    Zhu Y, Li J, Cai H et al (2013) Characterization of a new and thermostable esterase from a metagenomic library. Microbiol Res 168:589–597. doi: 10.1016/j.micres.2013.04.004 CrossRefGoogle Scholar
  42. 42.
    Harris AD (2012) Soil metagenomics: a prospective approach for novel enzyme discovery. Int J Curr Res 4:88–92Google Scholar
  43. 43.
    Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655. doi: 10.1016/S0953-7562(09)80810-1 CrossRefGoogle Scholar
  44. 44.
    Blackwell M (2011) The fungi: 1, 2, 3… 5.1 million species? Am J Bot 98:426–438. doi: 10.3732/ajb.1000298 CrossRefGoogle Scholar
  45. 45.
    Reeder J, Knight R (2009) The “rare biosphere”: a reality check. Nat Methods 6:636–637. doi: 10.1038/nmeth0909-636 CrossRefGoogle Scholar
  46. 46.
    Ling LL, Schneider T, Peoples AJ et al (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–459. doi: 10.1038/nature14098 CrossRefGoogle Scholar
  47. 47.
    Lewis K, Epstein S, D’Onofrio A, Ling LL (2010) Uncultured microorganisms as a source of secondary metabolites. J Antibiot 63:468–476. doi: 10.1038/ja.2010.87 CrossRefGoogle Scholar
  48. 48.
    Wohlgemuth R, Plazl I, Žnidaršič-Plazl P et al (2015) Microscale technology and biocatalytic processes: opportunities and challenges for synthesis. Trends Biotechnol 33:302–314. doi: 10.1016/j.tibtech.2015.02.010 CrossRefGoogle Scholar
  49. 49.
    Tušek A, Šalić A, Kurtanjek Ž, Zelić B (2012) Modeling and kinetic parameter estimation of alcohol dehydrogenase-catalyzed hexanol oxidation in a microreactor. Eng Life Sci 12:49–56. doi: 10.1002/elsc.201100020 CrossRefGoogle Scholar
  50. 50.
    Žnidaršič Plazl P (2014) Enzymatic microreactors utilizing non-aqueous media. Chim Oggi/Chem Today 32:54–60Google Scholar
  51. 51.
    Kintses B, Hein C, Mohamed MF et al (2012) Picoliter cell lysate assays in microfluidic droplet compartments for directed enzyme evolution. Chem Biol 19:1001–1009. doi: 10.1016/j.chembiol.2012.06.009 CrossRefGoogle Scholar
  52. 52.
    Wójcik M, Telzerow A, Quax WJ, Boersma YL (2015) High-throughput screening in protein engineering: recent advances and future perspectives. Int J Mol Sci 16:24918–24945. doi: 10.3390/ijms161024918 CrossRefGoogle Scholar
  53. 53.
    Boersma YL, Dröge MJ, Quax WJ (2007) Selection strategies for improved biocatalysts. FEBS J 274:2181–2195. doi: 10.1111/j.1742-4658.2007.05782.x CrossRefGoogle Scholar
  54. 54.
    Pitzler C, Wirtz G, Vojcic L et al (2014) A fluorescent hydrogel-based flow cytometry high-throughput screening platform for hydrolytic enzymes. Chem Biol 21:1733–1742. doi: 10.1016/j.chembiol.2014.10.018 CrossRefGoogle Scholar
  55. 55.
    Tu R, Martinez R, Prodanovic R et al (2011) A flow cytometry-based screening system for directed evolution of proteases. J Biomol Screen 16:285–294. doi: 10.1177/1087057110396361 CrossRefGoogle Scholar
  56. 56.
    Becker S, Höbenreich H, Vogel A et al (2008) Single-cell high-throughput screening to identify enantioselective hydrolytic enzymes. Angew Chem Int Ed 47:5085–5088. doi: 10.1002/anie.200705236 CrossRefGoogle Scholar
  57. 57.
    Fernández-Álvaro E, Snajdrova R, Jochens H et al (2011) A combination of in vivo selection and cell sorting for the identification of enantioselective biocatalysts. Angew Chem Int Ed 50:8584–8587. doi: 10.1002/anie.201102360 CrossRefGoogle Scholar
  58. 58.
    Davids T, Schmidt M, Böttcher D, Bornscheuer UT (2013) Strategies for the discovery and engineering of enzymes for biocatalysis. Curr Opin Chem Biol 17:215–220. doi: 10.1016/j.cbpa.2013.02.022 CrossRefGoogle Scholar
  59. 59.
    Yoo TH, Pogson M, Iverson BL, Georgiou G (2012) Directed evolution of highly selective proteases by using a novel FACS-based screen that capitalizes on the p53 regulator MDM2. ChemBioChem 13:649–653. doi: 10.1002/cbic.201100718 CrossRefGoogle Scholar
  60. 60.
    Agresti JJ, Antipov E, Abate AR et al (2010) Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc Natl Acad Sci USA 107:4004–4009. doi: 10.1073/pnas.0910781107 CrossRefGoogle Scholar
  61. 61.
    Deal KS, Easley CJ (2012) Self-regulated, droplet-based sample chopper for microfluidic absorbance detection. Anal Chem 84:1510–1516. doi: 10.1021/ac202791d CrossRefGoogle Scholar
  62. 62.
    Cecchini MP, Hong J, Lim C et al (2011) Ultrafast surface enhanced resonance raman scattering detection in droplet-based microfluidic systems. Anal Chem 83:3076–3081. doi: 10.1021/ac103329b CrossRefGoogle Scholar
  63. 63.
    Lee SA, Zheng G, Mukherjee N, Yang C (2012) On-chip continuous monitoring of motile microorganisms on an ePetri platform. Lab Chip 12:2385–2390. doi: 10.1039/C2LC40090A CrossRefGoogle Scholar
  64. 64.
    Salisbury CM, Maly DJ, Ellman JA (2002) Peptide microarrays for the determination of protease substrate specificity. J Am Chem Soc 124:14868–14870. doi: 10.1021/ja027477q CrossRefGoogle Scholar
  65. 65.
    Zhu Q, Uttamchandani M, Li D et al (2003) Enzymatic profiling system in a small-molecule microarray. Org Lett 5:1257–1260. doi: 10.1021/ol034233h CrossRefGoogle Scholar
  66. 66.
    Houseman BT, Mrksich M (2002) Carbohydrate arrays for the evaluation of protein binding and enzyme activity. Chem Biol 9:443–454CrossRefGoogle Scholar
  67. 67.
    Yeo WS, Mrksich M (2003) Self-assembled monolayers that transduce enzymatic activities to electrical signals. Angew Chem Int Ed 42:3121–3124. doi: 10.1002/anie.200250862 CrossRefGoogle Scholar
  68. 68.
    Gosalia DN, Diamond SL (2003) Printing chemical libraries on microarrays for fluid phase nanoliter reactions. Proc Natl Acad Sci USA 100:8721–8726. doi: 10.1073/pnas.1530261100 CrossRefGoogle Scholar
  69. 69.
    Park CB, Clark DS (2002) Sol-gel encapsulated enzyme arrays for high-throughput screening of biocatalytic activity. Biotechnol Bioeng 78:229–235. doi: 10.1002/bit.10238 CrossRefGoogle Scholar
  70. 70.
    Bisswanger H (2014) Enzyme assays. Perspectives. Science 1:41–55. doi: 10.1016/j.pisc.2014.02.005 Google Scholar
  71. 71.
    Haswell SJ, Middleton RJ, O’Sullivan B et al (2001) The application of micro reactors to synthetic chemistry. Chem Commun 80:391–398. doi: 10.1039/b008496o CrossRefGoogle Scholar
  72. 72.
    Abbas A, Treizebre A, Supiot P et al (2009) Cold plasma functionalized TeraHertz BioMEMS for enzyme reaction analysis. Biosens Bioelectron 25:154–160. doi: 10.1016/j.bios.2009.06.029 CrossRefGoogle Scholar
  73. 73.
    Kim DN, Lee Y, Koh W-G (2009) Fabrication of microfluidic devices incorporating bead-based reaction and microarray-based detection system for enzymatic assay. Sens Actuat B Chem 137:305–312. doi: 10.1016/j.snb.2008.12.042 CrossRefGoogle Scholar
  74. 74.
    Draper MC, Niu X, Cho S et al (2012) Compartmentalization of electrophoretically separated analytes in a multiphase microfluidic platform. Anal Chem 84:5801–5808. doi: 10.1021/ac301141x CrossRefGoogle Scholar
  75. 75.
    DeMello AJ (2006) Control and detection of chemical reactions in microfluidic systems. Nature 442:394–402. doi: 10.1038/nature05062 CrossRefGoogle Scholar
  76. 76.
    Elagli A, Laurette S, Treizebre A et al (2014) Diffusion based kinetic selectivity modulation of enzymatic proteolysis in a microfluidic reactor: experimental analysis and stochastic modeling. RSC Adv 4:3873–3882. doi: 10.1039/C3RA46005C CrossRefGoogle Scholar
  77. 77.
    Honda T, Miyazaki M, Nakamura H, Maeda H (2006) Facile preparation of an enzyme-immobilized microreactor using a cross-linking enzyme membrane on a microchannel surface. Adv Synth Catal 348:2163–2171. doi: 10.1002/adsc.200606224 CrossRefGoogle Scholar
  78. 78.
    Song YS, Shin HY, Lee JY et al (2012) β-Galactosidase-immobilised microreactor fabricated using a novel technique for enzyme immobilisation and its application for continuous synthesis of lactulose. Food Chem 133:611–617. doi: 10.1016/j.foodchem.2012.01.096 CrossRefGoogle Scholar
  79. 79.
    Anuar ST, Zhao Y-Y, Mugo SM, Curtis JM (2013) The development of a capillary microreactor for transesterification reactions using lipase immobilized onto a silica monolith. J Mol Catal B Enzym 92:62–70. doi: 10.1016/j.molcatb.2013.03.013 CrossRefGoogle Scholar
  80. 80.
    Ogończyk D, Jankowski P, Garstecki P et al (2012) Functionalization of polycarbonate with proteins; open-tubular enzymatic microreactors. Lab Chip 12:2743. doi: 10.1039/c2lc40204a CrossRefGoogle Scholar
  81. 81.
    Laurette S, Treizebre A, Elagli A et al (2012) Highly sensitive terahertz spectroscopy in microsystem. RSC Adv 2:10064. doi: 10.1039/c2ra21320f CrossRefGoogle Scholar
  82. 82.
    Elagli A, Belhacene K, Vivien C et al (2014) Facile immobilization of enzyme by entrapment using a plasma-deposited organosilicon thin film. J Mol Catal B Enzym 110:77–86. doi: 10.1016/j.molcatb.2014.09.014 CrossRefGoogle Scholar
  83. 83.
    Büchs J (2001) Introduction to advantages and problems of shaken cultures. Biochem Eng J 7:91–98. doi: 10.1016/S1369-703X(00)00106-6 CrossRefGoogle Scholar
  84. 84.
    Lattermann C, Büchs J (2015) Microscale and miniscale fermentation and screening. Curr Opin Biotechnol 35:1–6. doi: 10.1016/j.copbio.2014.12.005 CrossRefGoogle Scholar
  85. 85.
    Bhambure R, Kumar K, Rathore AS (2011) High-throughput process development for biopharmaceutical drug substances. Trends Biotechnol 29:127–135. doi: 10.1016/j.tibtech.2010.12.001 CrossRefGoogle Scholar
  86. 86.
    Marques M, Cabral J, Fernandes P (2009) High throughput in biotechnology: from shake-flasks to fully instrumented microfermentors. Recent Pat Biotechnol 3:124–140. doi: 10.2174/187220809788700193 CrossRefGoogle Scholar
  87. 87.
    Käß F, Prasad A, Tillack J et al (2014) Rapid assessment of oxygen transfer impact for Corynebacterium glutamicum. Bioprocess Biosyst Eng. doi: 10.1007/s00449-014-1234-1 Google Scholar
  88. 88.
    Duetz WA (2007) Microtiter plates as mini-bioreactors: miniaturization of fermentation methods. Trends Microbiol 15:469–475. doi: 10.1016/j.tim.2007.09.004 CrossRefGoogle Scholar
  89. 89.
    Huber R, Roth S, Rahmen N, Büchs J (2011) Utilizing high-throughput experimentation to enhance specific productivity of an E. coli T7 expression system by phosphate limitation. BMC Biotechnol 11:22. doi: 10.1186/1472-6750-11-22 CrossRefGoogle Scholar
  90. 90.
    Sundstrom ER, Criddle CS (2015) Optimization of methanotrophic growth and production of poly(3-hydroxybutyrate) in a high-throughput microbioreactor system. Appl Environ Microbiol 81:4767–4773. doi: 10.1128/aem.00025-15 CrossRefGoogle Scholar
  91. 91.
    Huber R, Ritter D, Hering T et al (2009) Robo-Lector—a novel platform for automated high-throughput cultivations in microtiter plates with high information content. Microb Cell Fact 8:42. doi: 10.1186/1475-2859-8-42 CrossRefGoogle Scholar
  92. 92.
    Huber R, Wulfhorst H, Maksym L et al (2011) Screening for enzyme activity in turbid suspensions with scattered light. Biotechnol Prog 27:555–561. doi: 10.1002/btpr.519 CrossRefGoogle Scholar
  93. 93.
    Jäger G, Wulfhorst H, Zeithammel EU et al (2011) Screening of cellulases for biofuel production: online monitoring of the enzymatic hydrolysis of insoluble cellulose using high-throughput scattered light detection. Biotechnol J 6:74–85. doi: 10.1002/biot.201000387 CrossRefGoogle Scholar
  94. 94.
    Oliveira AF, Pessoa ACSN, Bastos RG, de la Torre LG (2016) Microfluidic tools toward industrial biotechnology. Biotechnol Prog. doi: 10.1002/btpr.2350 Google Scholar
  95. 95.
    Blesken C, Olfers T, Grimm A, Frische N (2016) The microfluidic bioreactor for a new era of bioprocess development. Eng Life Sci 16:190–193. doi: 10.1002/elsc.201500026 CrossRefGoogle Scholar
  96. 96.
    Hegab HM, ElMekawy A, Stakenborg T (2013) Review of microfluidic microbioreactor technology for high-throughput submerged microbiological cultivation. Biomicrofluidics. doi: 10.1063/1.4799966 Google Scholar
  97. 97.
    Puskeiler R, Kusterer A, John GT, Weuster-Botz D (2005) Miniature bioreactors for automated high-throughput bioprocess design (HTBD): reproducibility of parallel fed-batch cultivations with Escherichia coli. Biotechnol Appl Biochem 42:227–235. doi: 10.1042/BA20040197 CrossRefGoogle Scholar
  98. 98.
    Funke M, Buchenauer A, Schnakenberg U et al (2010) Microfluidic biolector-microfluidic bioprocess control in microtiter plates. Biotechnol Bioeng 107:497–505. doi: 10.1002/bit.22825 CrossRefGoogle Scholar
  99. 99.
    Gebhardt G, Hortsch R, Kaufmann K et al (2011) A new microfluidic concept for parallel operated milliliter-scale stirred tank bioreactors. Biotechnol Prog 27:684–690. doi: 10.1002/btpr.570 CrossRefGoogle Scholar
  100. 100.
    Bras EJS, Chu V, Aires-Barros MR et al (2016) A microfluidic platform for physical entrapment of yeast cells with continuous production of invertase. J Chem Technol Biotechnol. doi: 10.1002/jctb.5010 Google Scholar
  101. 101.
    Schäpper D, Alam MNHZ, Szita N et al (2009) Application of microbioreactors in fermentation process development: a review. Anal Bioanal Chem 395:679–695. doi: 10.1007/s00216-009-2955-x CrossRefGoogle Scholar
  102. 102.
    de Jong J, Lammertink RGH, Wessling M (2006) Membranes and microfluidics: a review. Lab Chip 6:1125–1139. doi: 10.1039/b603275c CrossRefGoogle Scholar
  103. 103.
    Coutte F, Lecouturier D, Leclère V et al (2013) New integrated bioprocess for the continuous production, extraction and purification of lipopeptides produced by Bacillus subtilis in membrane bioreactor. Process Biochem 48:25–32. doi: 10.1016/j.procbio.2012.10.005 CrossRefGoogle Scholar
  104. 104.
    Zanzotto A, Szita N, Boccazzi P et al (2004) Membrane-aerated microbioreactor for high-throughput bioprocessing. Biotechnol Bioeng 87:243–254. doi: 10.1002/bit.20140 CrossRefGoogle Scholar
  105. 105.
    Daubert I, Mercier-Bonin M, Maranges C et al (2003) Why and how membrane bioreactors with unsteady filtration conditions can improve the efficiency of biological processes. Ann N Y Acad Sci 984:420–435CrossRefGoogle Scholar
  106. 106.
    Alam MNHZ, Pinelo M, Samanta K et al (2011) A continuous membrane microbioreactor system for development of integrated pectin modification and separation processes. Chem Eng J 167:418–426. doi: 10.1016/j.cej.2010.09.082 CrossRefGoogle Scholar
  107. 107.
    Coutte F, Lecouturier D, Firdaous L et al (2016) Recent trends in membrane bioreactors. Current developments in biotechnology and bioengineering. Recent Trends Membr Bioreact (In press) Google Scholar
  108. 108.
    Zavrel M, Bross D, Funke M et al (2009) High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol 100:2580–2587. doi: 10.1016/j.biortech.2008.11.052 CrossRefGoogle Scholar
  109. 109.
    Kirk TV, Szita N (2013) Oxygen transfer characteristics of miniaturized bioreactor systems. Biotechnol Bioeng 110:1005–1019. doi: 10.1002/bit.24824 CrossRefGoogle Scholar
  110. 110.
    Betts JI, Baganz F (2006) Miniature bioreactors: current practices and future opportunities. Microb Cell Fact 5:21. doi: 10.1186/1475-2859-5-21 CrossRefGoogle Scholar
  111. 111.
    Kim BJ, Diao J, Shuler ML (2012) Mini-scale bioprocessing systems for highly parallel animal cell cultures. Biotechnol Prog 28:595–607. doi: 10.1002/btpr.1554 CrossRefGoogle Scholar
  112. 112.
    Frachon E, Bondet V, Munier-Lehmann H, Bellalou J (2006) Multiple microfermentor battery: a versatile tool for use with automated parallel cultures of microorganisms producing recombinant proteins and for optimization of cultivation protocols. Appl Environ Microbiol 72:5225–5231. doi: 10.1128/AEM.00239-06 CrossRefGoogle Scholar
  113. 113.
    Motta Dos Santos LF, Coutte F, Ravallec R et al (2016) An improvement of surfactin production by B. subtilis BBG131 using design of experiments in microbioreactors and continuous process in bubbleless membrane bioreactor. Bioresour Technol. doi: 10.1016/j.biortech.2016.07.053
  114. 114.
    Riedlberger P, Weuster-Botz D (2012) New miniature stirred-tank bioreactors for parallel study of enzymatic biomass hydrolysis. Bioresour Technol 106:138–146. doi: 10.1016/j.biortech.2011.12.019 CrossRefGoogle Scholar
  115. 115.
    Nunes MAP, Fernandes PCB, Ribeiro MHL (2013) Microtiter plates versus stirred mini-bioreactors in biocatalysis: a scalable approach. Bioresour Technol 136:30–40. doi: 10.1016/j.biortech.2013.02.057 CrossRefGoogle Scholar
  116. 116.
    Delvigne F, Brognaux A, Francis F et al (2011) Green fluorescent protein (GFP) leakage from microbial biosensors provides useful information for the evaluation of the scale-down effect. Biotechnol J 6:968–978. doi: 10.1002/biot.201000410 CrossRefGoogle Scholar
  117. 117.
    Brognaux A, Thonart P, Delvigne F et al (2013) Direct and indirect use of GFP whole cell biosensors for the assessment of bioprocess performances: design of milliliter scale-down bioreactors. Biotechnol Prog 29:48–59. doi: 10.1002/btpr.1660 CrossRefGoogle Scholar
  118. 118.
    Guiochon G, Beaver LA (2011) Separation science is the key to successful biopharmaceuticals. J Chromatogr A 1218:8836–8858. doi: 10.1016/j.chroma.2011.09.008 CrossRefGoogle Scholar
  119. 119.
    Shukla AA, Hubbard B, Tressel T et al (2007) Downstream processing of monoclonal antibodies—application of platform approaches. J Chromatogr B Anal Technol Biomed Life Sci 848:28–39. doi: 10.1016/j.jchromb.2006.09.026 CrossRefGoogle Scholar
  120. 120.
    Kuhad RC, Deswal D, Sharma S et al (2016) Revisiting cellulase production and redefining current strategies based on major challenges. Renew Sustain Energy Rev 55:249–272. doi: 10.1016/j.rser.2015.10.132 CrossRefGoogle Scholar
  121. 121.
    Nfor BK, Verhaert PDEM, van der Wielen LAM et al (2009) Rational and systematic protein purification process development: the next generation. Trends Biotechnol 27:673–679. doi: 10.1016/j.tibtech.2009.09.002 CrossRefGoogle Scholar
  122. 122.
    Łacki KM, Lacki KM (2014) High throughput process development in biomanufacturing. Curr Opin Chem Eng 6:25–32. doi: 10.1016/j.coche.2014.08.004 CrossRefGoogle Scholar
  123. 123.
    Hanke AT, Ottens M (2014) Purifying biopharmaceuticals: knowledge-based chromatographic process development. Trends Biotechnol 32:210–220. doi: 10.1016/j.tibtech.2014.02.001 CrossRefGoogle Scholar
  124. 124.
    Jungbauer A (2013) Continuous downstream processing of biopharmaceuticals. Trends Biotechnol 31:479–492. doi: 10.1016/j.tibtech.2013.05.011 CrossRefGoogle Scholar
  125. 125.
    Carapito R, Gallet B, Zapun A, Vernet T (2006) Automated high-throughput process for site-directed mutagenesis, production, purification, and kinetic characterization of enzymes. Anal Biochem 355:110–116. doi: 10.1016/j.ab.2006.04.047 CrossRefGoogle Scholar
  126. 126.
    Yoo D, Provchy J, Park C et al (2014) Automated high-throughput protein purification using an ÄKTApurifier and a CETAC autosampler. J Chromatogr A 1344:23–30. doi: 10.1016/j.chroma.2014.04.014 CrossRefGoogle Scholar
  127. 127.
    Merrill AH, Sullards MC, Allegood JC et al (2005) Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods 36:207–224. doi: 10.1016/j.ymeth.2005.01.009 CrossRefGoogle Scholar
  128. 128.
    de Boer AR, Letzel T, van Elswijk DA et al (2004) On-line coupling of high-performance liquid chromatography to a continuous-flow enzyme assay based on electrospray ionization mass spectrometry. Anal Chem 76:3155–3161. doi: 10.1021/ac035380w CrossRefGoogle Scholar
  129. 129.
    Gillet LC, Leitner A, Aebersold R (2015) Mass spectrometry applied to bottom-up proteomics: entering the high-throughput era for hypothesis testingGoogle Scholar
  130. 130.
    Swaney DL, Villén J (2016) Proteomic analysis of protein posttranslational modifications by mass spectrometry. Cold Spring Harbor Protoc 2016:pdb.top077743. doi: 10.1101/pdb.top077743
  131. 131.
    McCullough B, Gaskell S (2009) Using electrospray ionisation mass spectrometry to study non-covalent interactions. Comb Chem High Throughput Screen 12:203–211. doi: 10.2174/138620709787315463 CrossRefGoogle Scholar
  132. 132.
    Gingras A-C, Gstaiger M, Raught B, Aebersold R (2007) Analysis of protein complexes using mass spectrometry. Nat Rev Mol Cell Biol 8:645–654. doi: 10.1038/nrm2208 CrossRefGoogle Scholar
  133. 133.
    Smits AH, Vermeulen M (2016) Characterizing protein–protein interactions using mass spectrometry: challenges and opportunities. Trends Biotechnol. doi: 10.1016/j.tibtech.2016.02.014 Google Scholar
  134. 134.
    Van Veen SQ, Claas ECJ, Kuijper EJ (2010) High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol 48:900–907. doi: 10.1128/JCM.02071-09 CrossRefGoogle Scholar
  135. 135.
    Sandrin TR, Goldstein JE, Schumaker S (2013) MALDI TOF MS profiling of bacteria at the strain level: a review. Mass Spectrom Rev. doi: 10.1002/mas Google Scholar
  136. 136.
    Cornett DS, Reyzer ML, Chaurand P, Caprioli RM (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods 4:828–833. doi: 10.1038/nmeth1094 CrossRefGoogle Scholar
  137. 137.
    Bodzon-Kulakowska A, Bierczynska-Krzysik A, Dylag T et al (2006) Methods for samples preparation in proteomic research. J Chromatogr B Analyt Technol Biomed Life Sci 849:1–31CrossRefGoogle Scholar
  138. 138.
    Barkal LJ, Theberge AB, Guo C et al (2016) Microbial metabolomics in open microscale platforms. Nat Commun 7:1–11. doi: 10.1038/ncomms10610 CrossRefGoogle Scholar
  139. 139.
    de Raad M, Fischer CR, Northen TR (2015) High-throughput platforms for metabolomics. Curr Opin Chem Biol 30:7–13. doi: 10.1016/j.cbpa.2015.10.012 CrossRefGoogle Scholar
  140. 140.
    Welker M (2011) Proteomics for routine identification of microorganisms. Proteomics 11:3143–3153. doi: 10.1002/pmic.201100049 CrossRefGoogle Scholar
  141. 141.
    Schey KL, Hachey AJ, Rose KM, Grey AC (2016) MALDI imaging mass spectrometry of Pacific White Shrimp L. vannamei and identification of abdominal muscle. Proteins. doi: 10.1002/pmic.201500531 Google Scholar
  142. 142.
    De Rond T, Peralta-Yahya P, Cheng X et al (2013) Versatile synthesis of probes for high-throughput enzyme activity screening. Anal Bioanal Chem 405:4969–4973. doi: 10.1007/s00216-013-6888-z CrossRefGoogle Scholar
  143. 143.
    Chen B, Peng Y, Valeja SG et al (2016) Online hydrophobic interaction chromatography–mass spectrometry for top-down proteomics. Anal Chem. doi: 10.1021/acs.analchem.5b04285 Google Scholar
  144. 144.
    Catherman AD, Skinner OS, Kelleher NL (2014) Top down proteomics: facts and perspectives. Biochem Biophys Res Commun 445:683–693. doi: 10.1016/j.bbrc.2014.02.041 CrossRefGoogle Scholar
  145. 145.
    Mayne J, Ning Z, Zhang X et al (2016) Bottom-up proteomics (2013–2015): keeping up in the era of systems biology. Anal Chem 88:95–121. doi: 10.1021/acs.analchem.5b04230 CrossRefGoogle Scholar
  146. 146.
    Qi Y, Volmer DA (2016) Structural analysis of small to medium-sized molecules by mass spectrometry after electron-ion fragmentation (ExD) reactions. Analyst 141:794–806. doi: 10.1039/c5an02171e CrossRefGoogle Scholar
  147. 147.
    Hu A, Noble WS, Wolf-Yadlin A (2016) Technical advances in proteomics: new developments in data-independent acquisition. F1000Research. doi:10.12688/f1000research.7042.1Google Scholar
  148. 148.
    Chen P (2003) Electrospray ionization tandem mass spectrometry in high-throughput screening of homogeneous catalysts. Angew Chem Int Ed 42:2832–2847. doi: 10.1002/anie.200200560 CrossRefGoogle Scholar
  149. 149.
    Ng ESM, Yang F, Kameyama A et al (2005) High-throughput screening for enzyme inhibitors using frontal affinity chromatography with liquid chromatography and mass spectrometry. Anal Chem 77:6125–6133. doi: 10.1021/ac051131r CrossRefGoogle Scholar
  150. 150.
    Yi X, Hao Y, Xia N et al (2013) Sensitive and continuous screening of inhibitors of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) at single SPR chips. Anal Chem 85:3660–3666. doi: 10.1021/ac303624z CrossRefGoogle Scholar
  151. 151.
    Ahmad S, Hughes MA, Johnson GL, Scott JE (2013) Development and validation of a high-throughput intrinsic ATPase activity assay for the discovery of MEKK2 inhibitors. J Biomol Screen 18:388–399. doi: 10.1177/1087057112466430 CrossRefGoogle Scholar
  152. 152.
    Greis KD (2006) Mass spectrometry for enzyme assays and inhibitor screening: an emerging application in pharmaceutical research. Mass Spectrom Rev 26:324–339. doi: 10.1002/mas.20127 CrossRefGoogle Scholar
  153. 153.
    Domínguez JM, Fuertes A, Orozco L et al (2012) Evidence for irreversible inhibition of glycogen synthase kinase-3β by tideglusib. J Biol Chem 287:893–904. doi: 10.1074/jbc.M111.306472 CrossRefGoogle Scholar
  154. 154.
    Song XS, Zhang J, Chen X et al (2015) Identification of DGAT2 inhibitors using mass spectrometry. J Biomol Screen. doi: 10.1177/1087057115607463 Google Scholar
  155. 155.
    Reetz MT, Becker MH (1999) Enantioselective catalysts. Communications 1758–1761Google Scholar
  156. 156.
    Schrader W, Eipper A, Pugh DJ, Reetz MT (2002) Second-generation MS-based high-throughput screening system for enantioselective catalysts and biocatalysts. Can J Chem 80:626–632. doi: 10.1139/v02-069 CrossRefGoogle Scholar
  157. 157.
    Bakhtiar R, Ramos L, Tse FL (2001) Use of atmospheric pressure ionization mass spectrometry in enantioselective liquid chromatography. Chirality 13:63–74. doi: 10.1002/1520-636X(2001)13:2<63:AID-CHIR1000>3.0.CO;2-5 CrossRefGoogle Scholar
  158. 158.
    Schug K (2007) Solution phase enantioselective recognition and discrimination by electrospray ionization–mass spectrometry: state-of-the-art, methods, and an eye towards increased throughput measurements. Comb Chem High Throughput Screen 10:301–316. doi: 10.2174/138620707781662790 CrossRefGoogle Scholar
  159. 159.
    Kanie O, Shioiri Y, Ogata K et al (2016) Diastereomeric resolution directed towards chirality determination focussing on gas-phase energetics of coordinated sodium dissociation. Sci Rep 6:24005. doi: 10.1038/srep24005 CrossRefGoogle Scholar
  160. 160.
    Lepère V, Le Barbu-Debus K, Clavaguéra C et al (2015) Chirality-dependent structuration of protonated or sodiated polyphenylalanines: IRMPD and ion mobility studies. Phys Chem Chem Phys. doi: 10.1039/C5CP06768E.10.1039/C5CP06768E Google Scholar
  161. 161.
    Dancík V, Addona TA, Clauser KR et al (2004) De novo peptide sequencing via tandem mass spectrometry. J Comput Biol J Comput Mol Cell Biol 6:327–342. doi: 10.1089/106652799318300 CrossRefGoogle Scholar
  162. 162.
    Trimpin S (2016) “Magic” ionization mass spectrometry. J Am Soc Mass Spectrom 27:4–21. doi: 10.1007/s13361-015-1253-4 CrossRefGoogle Scholar
  163. 163.
    Cramer R (2015) Advances in MALDI and laser-induced soft ionization mass spectrometry. Adv MALDI Laser Induc Soft Ioniz Mass Spectrom. doi: 10.1007/978-3-319-04819-2 Google Scholar
  164. 164.
    Smoluch M, Mielczarek P, Silberring J (2016) Plasma-based ambient ionization mass spectrometry in bioanalytical sciences. Mass Spectrom Rev 35:22–34. doi: 10.1002/mas.21460 CrossRefGoogle Scholar
  165. 165.
    Gordon LJ, Allen M, Artursson P et al (2016) Direct measurement of intracellular compound concentration by rapidfire mass spectrometry offers insights into cell permeability. J Biomol Screen 21:156–164. doi: 10.1177/1087057115604141 CrossRefGoogle Scholar
  166. 166.
    Chumbley CW, Reyzer ML, Allen JL et al (2016) Absolute quantitative MALDI imaging mass spectrometry: a case of rifampicin in liver tissues. Anal Chem 88:2392–2398. doi: 10.1021/acs.analchem.5b04409 CrossRefGoogle Scholar
  167. 167.
    Holding AN (2015) XL-MS: protein cross-linking coupled with mass spectrometry. Methods 89:54–63. doi: 10.1016/j.ymeth.2015.06.010 CrossRefGoogle Scholar
  168. 168.
    Leitner A, Faini M, Stengel F, Aebersold R (2016) Crosslinking and mass spectrometry: an integrated technology to understand the structure and function of molecular machines. Trends Biochem Sci 41:20–32. doi: 10.1016/j.tibs.2015.10.008 CrossRefGoogle Scholar
  169. 169.
    Ghaste M, Mistrik R, Shulaev V (2016) Applications of Fourier transform ion cyclotron resonance (FT-ICR) and orbitrap based high resolution mass spectrometry in metabolomics and lipidomics. Int J Mol Sci 17:816. doi: 10.3390/ijms17060816 CrossRefGoogle Scholar
  170. 170.
    Ma X, Ouyang Z (2016) Ambient ionization and miniature mass spectrometry system for chemical and biological analysis. TrAC Trends Anal Chem. doi: 10.1016/j.trac.2016.04.009 Google Scholar
  171. 171.
    Cetina DM, Giraldo GI, Orrego CE (2011) Application of response surface design to solvent, temperature and lipase selection for optimal monoglyceride production. J Mol Catal B Enzym 72:13–19. doi: 10.1016/j.molcatb.2011.04.017 CrossRefGoogle Scholar
  172. 172.
    Corrêa FDA, Sutili FK, Miranda LSM et al (2012) Epoxidation of oleic acid catalyzed by PSCI-amano lipase optimized by experimental design. J Mol Catal B Enzym 81:7–11. doi: 10.1016/j.molcatb.2012.03.011 CrossRefGoogle Scholar
  173. 173.
    Gonçalves KM, Sutili FK, Leite SGF et al (2012) Palm oil hydrolysis catalyzed by lipases under ultrasound irradiation—the use of experimental design as a tool for variables evaluation. Ultrason Sonochem 19:232–236. doi: 10.1016/j.ultsonch.2011.06.017 CrossRefGoogle Scholar
  174. 174.
    Lee A, Chaibakhsh N, Rahman MBA et al (2010) Optimized enzymatic synthesis of levulinate ester in solvent-free system. Ind Crops Prod 32:246–251. doi: 10.1016/j.indcrop.2010.04.022 CrossRefGoogle Scholar
  175. 175.
    Heuson E, Petit J-L, Debard A et al (2016) Continuous colorimetric screening assays for the detection of specific l- or d-α-amino acid transaminases in enzyme libraries. Appl Microbiol Biotechnol 100:397–408. doi: 10.1007/s00253-015-6988-0 CrossRefGoogle Scholar
  176. 176.
    Lerin LA, Richetti A, Dallago R et al (2012) Enzymatic synthesis of ascorbyl palmitate in organic solvents: process optimization and kinetic evaluation. Food Bioprocess Technol 5:1068–1076. doi: 10.1007/s11947-010-0398-1 CrossRefGoogle Scholar
  177. 177.
    Abildskov J, Van Leeuwen MB, Boeriu CG, Van Den Broek LAM (2013) Computer-aided solvent screening for biocatalysis. J Mol Catal B Enzym 85–86:200–213. doi: 10.1016/j.molcatb.2012.09.012 CrossRefGoogle Scholar
  178. 178.
    Rosa SM, Soria MA, Vlez CG, Galvagno MA (2010) Improvement of a two-stage fermentation process for docosahexaenoic acid production by Aurantiochytrium limacinum SR21 applying statistical experimental designs and data analysis. Bioresour Technol 101:2367–2374. doi: 10.1016/j.biortech.2009.11.056 CrossRefGoogle Scholar
  179. 179.
    Godoy MG, Gutarra MLE, Castro AM et al (2011) Adding value to a toxic residue from the biodiesel industry: production of two distinct pool of lipases from Penicillium simplicissimum in castor bean waste. J Ind Microbiol Biotechnol 38:945–953. doi: 10.1007/s10295-010-0865-8 CrossRefGoogle Scholar
  180. 180.
    Malik M, Ganguli A, Ghosh M (2012) Modeling of permeabilization process in Pseudomonas putida G7 for enhanced limonin bioconversion. Appl Microbiol Biotechnol 95:223–231. doi: 10.1007/s00253-012-3880-z CrossRefGoogle Scholar
  181. 181.
    Lattanzio VMT, Von Holst C, Visconti A (2013) Experimental design for in-house validation of a screening immunoassay kit. The case of a multiplex dipstick for Fusarium mycotoxins in cereals. Anal Bioanal Chem 405:7773–7782. doi: 10.1007/s00216-013-6922-1 CrossRefGoogle Scholar
  182. 182.
    Rios-Solis L, Bayir N, Halim M et al (2013) Non-linear kinetic modelling of reversible bioconversions: application to the transaminase catalyzed synthesis of chiral amino-alcohols. Biochem Eng J 73:38–48. doi: 10.1016/j.bej.2013.01.010 CrossRefGoogle Scholar
  183. 183.
    Fu Q, Zhang C, Lin Z et al (2016) Rapid screening and identification of compounds with DNA-binding activity from folium citri reticulatae using on-line HPLC-DAD-MS(n) coupled with a post column fluorescence detection system. Food Chem 192:250–259. doi: 10.1016/j.foodchem.2015.07.009 CrossRefGoogle Scholar
  184. 184.
    Müller MM, Hausmann R (2011) Regulatory and metabolic network of rhamnolipid biosynthesis: traditional and advanced engineering towards biotechnological production. Appl Microbiol Biotechnol 91:251–264. doi: 10.1007/s00253-011-3368-2 CrossRefGoogle Scholar
  185. 185.
    Brooks KM, Hampel KJ (2011) Rapid steps in the glmS ribozyme catalytic pathway: cation and ligand requirements. Biochemistry 50:2424–2433. doi: 10.1021/bi101842u CrossRefGoogle Scholar
  186. 186.
    Bøjstrup M, Marri L, Lok F, Hindsgaul O (2015) A chromogenic assay suitable for high-throughput determination of limit dextrinase activity in barley malt extracts. J Agric Food Chem 63:10873–10878. doi: 10.1021/acs.jafc.5b04596 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Philippe Jacques
    • 1
  • Max Béchet
    • 1
  • Muriel Bigan
    • 1
  • Delphine Caly
    • 1
  • Gabrielle Chataigné
    • 1
  • François Coutte
    • 1
  • Christophe Flahaut
    • 1
  • Egon Heuson
    • 1
  • Valérie Leclère
    • 1
  • Didier Lecouturier
    • 1
  • Vincent Phalip
    • 1
  • Rozenn Ravallec
    • 1
  • Pascal Dhulster
    • 1
  • Rénato Froidevaux
    • 1
  1. 1.Equipe Procédés Biologiques, Génie Enzymatique et Microbien, ProBioGEM, Institut Charles Viollette, E.A. 7394Université de Lille et Université d’ArtoisVilleneuve d’AscqFrance

Personalised recommendations