Skip to main content

Advertisement

Log in

Bioconversion of waste office paper to hydrogen using pretreated rumen fluid inoculum

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, a microbial consortium from an acid-treated rumen fluid was used to improve the yields of H2 production from paper residues in batch reactors. The anaerobic batch reactors, which contained paper and cellulose, were operated under three conditions: (1) 0.5 g paper/L, (2) 2 g paper/L, and (3) 4 g paper/L. Cellulase was added to promote the hydrolysis of paper to soluble sugars. The H2 yields were 5.51, 4.65, and 3.96 mmol H2/g COD, respectively, with substrate degradation ranging from 56 to 65.4 %. Butyric acid was the primary soluble metabolite in the three reactors, but pronounced solventogenesis was detected in the reactors incubated with increased paper concentrations (2.0 and 4.0 g/L). A substantial prevalence of Clostridium acetobutylicum (99 % similarity) was observed in the acid-treated rumen fluid, which has been recognized as an efficient H2-producing strain in addition to ethanol and n-butanol which were also detected in the reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nath K, Das D (2004) Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol 65:520–529

    Article  CAS  Google Scholar 

  2. Urbaniec K, Bakker RR (2015) Biomass residues as raw material for dark hydrogen fermentation—a review. Int J Hydrogen Energy 40:3648–3658

    Article  CAS  Google Scholar 

  3. Wang L, Sharifzadeh M, Templer R, Murphy RJ (2013) Bioethanol production from various waste papers: economic feasibility and sensitivity analysis. Appl Energ 111:1172–1182

    Article  CAS  Google Scholar 

  4. Troschinetz AM, Mihelcic JR (2009) Sustainable recycling of municipal solid waste in developing countries. Waste Manage 29:915–923

    Article  CAS  Google Scholar 

  5. Chu KH, Feng X (2013) Enzymatic conversion of newspaper and office paper to fermentable sugas. Process Saf Environ 91:123–130

    Article  CAS  Google Scholar 

  6. Chairattanamanokorn P, Tapananont S, Detjaroen S, Sangkhatim J, Anurakpongsatorn P, Sirirote P (2012) Additional paper waste in pulping sludge for biohydrogen production by heat-shocked sludge. Appl Biochem Biotechnol 166:389–401

    Article  CAS  Google Scholar 

  7. Wu FC, Huang SS, Shih IL (2014) Sequential hydrolysis of waste newspaper and bioethanol production from the hydrolysate. Bioresour Technol 167:159–168

    Article  CAS  Google Scholar 

  8. Shi AZ, Koh LP, Tan HTW (2009) The biofuel potential of municipal solid waste. Glob Change Biol Bioenergy 1:317–320

    Article  CAS  Google Scholar 

  9. Yen HW, Brune DE (2008) Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol 98:130–134

    Article  Google Scholar 

  10. Elliston A, Collins SRA, Wilson DR, Roberts IN, Waldron KW (2013) High concentrations of cellulosic ethanol achieved by fed batch semi simultaneous saccharification and fermentation of waste-paper. Bioresour Technol 134:117–126

    Article  CAS  Google Scholar 

  11. Roychowdhury S, Cox D, Levandowsky M (1988) Production of hydrogen by microbial fermentation. Int J Hydrogen Energy 13:407–410

    Article  CAS  Google Scholar 

  12. Kádar Z, Vrije T, Van Noorden GE, Budde MAW, Szengyel Z, Réczey K (2004) Yields from glucose, xylose, and paper sludge hydrolysate during hydrogen production by extreme thermophile Caldicellulosiruptor saccharolyticus. Appl Biochem Biotech 113:497–508

    Article  Google Scholar 

  13. Datar R, Huang J, Maness PC, Mohagheghi A, Czernik S, Chornet E (2007) Hydrogen production from the fermentation of corn stover biomasss pretreated with a steam-explosiom process. Int J Hydrogen Energy 32:932–939

    Article  CAS  Google Scholar 

  14. Ratti RP, Botta LS, Sakamoto IK, Silva EL, Varesche MBA (2014) Production of H2 from cellulose by rumen microorganisms: effects of inocula pre-treatment and enzymatic hydrolysis. Biotechnol Lett 36:537–546

    Article  CAS  Google Scholar 

  15. Barnes SP, Keller J (2004) Anaerobic rumen SBR for degradation of cellulosic material. Wat Sci Technol 50:305–311

    CAS  Google Scholar 

  16. Hu ZH, Yu HQ (2005) Application of rumen microorganisms for enhanced anaerobic degradation of corn stover. Process Biochem 40:2371–2377

    Article  CAS  Google Scholar 

  17. Yue ZB, Li WW, Yu HQ (2013) Application of rumen microorganisms for anaerobic bioconversion of lignocellulosic biomass. Bioresour Technol 128:738–744

    Article  CAS  Google Scholar 

  18. Chang JJ, Lin JJ, Ho CY, Chin WC, Huang CC (2010) Establishment of rumen-mimic bacterial consortia: a functional union for biohydrogen production from cellulosic bioresource. Int J Hydrogen Energy 35:1579–1585

    Google Scholar 

  19. Ho CY, Chang JJ, Lin JJ, Chin TY, Mathew GM, Huang CC (2011) Establishment of functional rumen bacterial consortia (FRBC) for simultaneous biohydrogen and bioethanol production from lignocellulose. Int J Hydrogen Energy 36:12168–12176

    Article  CAS  Google Scholar 

  20. APHA, AWWA, WEF (2005) Standard methods for the examination of water and wastewater, 21st edn. APHA, Washington, DC

    Google Scholar 

  21. Sigma-Aldrich Chemical Company (2010) Sigma-Aldrich Catalog: Where Bio Begins - Products for Life Science Research, 2011–2012 edn, Chicago, USA

  22. Wang J, Wan W (2008) Comparison of different pretreatment methods for enriching hydrogen-producing bacteria from digested sludge. Int J Hydrogen Energy 33:2934–2941

    Article  CAS  Google Scholar 

  23. Penteado ED, Lazaro CZ, Sakamoto IK, Zaiat M (2013) Influence of seed sludge and pretreatment method on hydrogen production in packed-bed anaerobic reactors. Int J Hydrogen Energy 38:6137–6145

    Article  CAS  Google Scholar 

  24. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1965) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  Google Scholar 

  25. Lay JJ (2001) Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol Bioeng 74:280–287

    Article  CAS  Google Scholar 

  26. Nubel U, Engelen B, Felske A, Snaidr J, Wiestuber A, Amann RI (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643

    CAS  Google Scholar 

  27. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester

    Google Scholar 

  28. Kumar S, Dudley J, Nei M, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  CAS  Google Scholar 

  29. Logan BE, Oh SE, Kim IS, Van Ginkel S (2002) Biological hydrogen production measured in batch anaerobic respirometers. Environ Sci Technol 36:2530–2535

    Article  CAS  Google Scholar 

  30. Fang HHP, Li C, Zhang T (2006) Acidophilic biohydrogen production from rice slurry. Int J Hydrogen Energy 31:683–692

    Article  CAS  Google Scholar 

  31. Ntaikou G, Koutros E, Kornaros M (2009) Valorisation of wastepaper using the fibrolytic/hydrogen producing bacterium Ruminococcus albus. Bioresour Technol 100:5928–5933

    Article  CAS  Google Scholar 

  32. Valdez-Vazquez I, Sparling R, Risbey D, Rinderknecht-Seijas N, Poggi-Varaldo HM (2005) Hydrogen generation via anaerobic fermentation of paper mill wastes. Int J Hydrogen Energy 96:1907–1913

    CAS  Google Scholar 

  33. Kim JK, Nhat L, Chun YN, Kim SW (2008) Hydrogen production conditions from food waste by dark fermentation with Clostridium beijerinckii KCTC 1785. Biotechnol Bioprocess Eng 13:499–504

    Article  CAS  Google Scholar 

  34. Ballesteros M, Oliva JM, Manzanares P, Negro MJ, Ballesteros I (2002) Ethanol production from paper material using a simultaneous saccharification and fermentation system in a fed-batch basis. World J Microb Biot 18:559–561

    Article  CAS  Google Scholar 

  35. Maintinguer SI, Fernandes BS, Duarte ICS, Savedra NK, Adorno MAT, Varesche MBA (2008) Fermentative hydrogen production by microbial consortium. Int J Hydrogen Energy 33:4309–4317

    Article  CAS  Google Scholar 

  36. Maintinguer SI, Fernandes BS, Duarte ICS, Saavedra NK, Adorno MAT, Varesche MBA (2011) Fermentative hydrogen production with xylose by Clostridium and Klebsiella species in anaerobic batch reactors. Int J Hydrogen Energy 36:13508–13517

    Article  CAS  Google Scholar 

  37. Guo YP, Fan SQ, Fan YT, Pan CM, Hou HW (2010) The preparation and application of crude cellulase for cellulose—hydrogen production by anaerobic fermentation. Int J Hydrogen Energy 35:459–468

    Article  CAS  Google Scholar 

  38. Chen CC, Lin CY, Lin MC (2002) Acid-base enrichment enhances anaerobic hydrogen production process. Appl Microbiol Biotech 58:224–228

    Article  Google Scholar 

  39. Chen W, Tseng Z, Lee K, Chang J (2005) Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. Int J Hydrogen Energy 30:1063–1070

    Article  CAS  Google Scholar 

  40. Mohan SV, Babu VL, Sarma PN (2008) Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastepaper as substrate. Bioresour Technol 99:59–67

    Article  CAS  Google Scholar 

  41. KhanaL SK, Chen WH, Li L, Sung S (2004) Biological hydrogen production: effects of pH and intermediate products. Int J Hydrogen Energy 29:1123–1131

    CAS  Google Scholar 

  42. Russell JB, Dombrowski DB (1980) Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Appl Environ Microbiol 39:604–610

    CAS  Google Scholar 

  43. Liang DW, Shayegan SS, Ng WJ, He J (2010) Development and characteristics of rapidly formed hydrogen-producing granules in an acidic anaerobic sequencing batch reactor (AnSBR). Biochem Eng J 49:119–125

    Article  CAS  Google Scholar 

  44. Satoh H, Miura Y, Tsushima I, Okabe S (2007) Layered structure of bacterial and archaeal communities and their in situ activities in anaerobic granules. Appl Environ Microbiol 73:7300–7307

    Article  CAS  Google Scholar 

  45. Staley BF, de Los Reyes FL, Barlaz MA (2011) Effect of spatial differences in microbial activity, pH, and substrate levels on methanogenesis initiation in refuse. Appl Environ Microbiol 77:2381–2391

    Article  CAS  Google Scholar 

  46. Abreu AA, Alves JI, Pereira MA, Karakashev D, Alves MM, Angelidaki I (2010) Engineered heat treated methanogenic granules: a promising biotechnological approach for extreme thermophilic biohydrogen production. Bioresour Technol 101:9577–9586

    Article  CAS  Google Scholar 

  47. Tamburini E, León AG, Perito B, Mastromei G (2003) Characterization of bacterial pectinolytic strains involved in the water retting process. Environ Microbiol 5:730–736

    Article  CAS  Google Scholar 

  48. Keys S, Shaheen R, Jones DT (2001) Emended descriptions of Clostridium acetobutylicum and Clostridium beijerinckii, and descriptions of Clostridium saccharoperbutylacetonicum sp. Nov. and Clostridium saccharobutylicum sp. nov. Int J Syst Evol Microbiol 51:2095–2103

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of CNPq—National Council for Scientific and Technological Development and FAPESP—São Paulo Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edson Luiz Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botta, L.S., Ratti, R.P., Sakamoto, I.K. et al. Bioconversion of waste office paper to hydrogen using pretreated rumen fluid inoculum. Bioprocess Biosyst Eng 39, 1887–1897 (2016). https://doi.org/10.1007/s00449-016-1663-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1663-0

Keywords

Navigation