Advertisement

Bioprocess and Biosystems Engineering

, Volume 39, Issue 9, pp 1415–1423 | Cite as

Acetic acid-catalyzed hydrothermal pretreatment of corn stover for the production of bioethanol at high-solids content

  • Constantinos Katsimpouras
  • Paul Christakopoulos
  • Evangelos TopakasEmail author
Original Paper

Abstract

Corn stover (CS) was hydrothermally pretreated using CH3COOH (0.3 %, v/v), and subsequently its ability to be utilized for conversion to ethanol at high-solids content was investigated. Pretreatment conditions were optimized employing a response surface methodology (RSM) with temperature and duration as independent variables. Pretreated CS underwent a liquefaction/saccharification step at a custom designed free-fall mixer at 50 °C for either 12 or 24 h using an enzyme loading of 9 mg/g dry matter (DM) at 24 % (w/w) DM. Simultaneous enzymatic saccharification and fermentation (SSF) of liquefacted corn stover resulted in high ethanol concentration (up to 36.8 g/L), with liquefaction duration having a negligible effect. The threshold of ethanol concentration of 4 % (w/w), which is required to reduce the cost of ethanol distillation, was surpassed by the addition of extra enzymes at the start up of SSF achieving this way ethanol titer of 41.5 g/L.

Keywords

Corn stover Pretreatment Ethanol fermentation Enzymatic liquefaction Response surface methodology 

Notes

Acknowledgments

The financial support of General Secretariat of Research and Technology (GSRT) of Greece-ESPA 2007–2013 (SYNERGASIA 2011; 11SYN_7_1579) is gratefully acknowledged. We are also grateful to Novozymes A/S for the generous gifts of Celluclast® 1.5 L, Novozyme® 188 and Cellic® CTec2, and to Lesaffre for the generous gift of Ethanol Red®.

Compliance with ethical standards

Conflict of interest

The authors declare that no conflict of interest exists.

References

  1. 1.
    Li X, Lu J, Zhao J, Qu Y (2014) Characteristics of corn stover pretreated with liquid hot water and fed-batch semi-simultaneous saccharification and fermentation for bioethanol production. PLoS One. doi: 10.1371/journal.pone.0095455 Google Scholar
  2. 2.
    Larsen J, Haven MØ, Thirup L (2012) Inbicon makes lignocellulosic ethanol a commercial reality. Biomass Bioenerg 46:36–45. doi: 10.1016/j.biombioe.2012.03.033 CrossRefGoogle Scholar
  3. 3.
    Saha BC, Yoshida T, Cotta M, Sonomoto K (2013) Hydrothermal pretreatment and enzymatic saccharification of corn stover for efficient ethanol production. Ind Crops Prod 44:367–372. doi: 10.1016/j.indcrop.2012.11.025 CrossRefGoogle Scholar
  4. 4.
    Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Bioresour 2:26–40. doi: 10.1002/bbb.49 CrossRefGoogle Scholar
  5. 5.
    Gullón P, Romaní A, Vila C et al (2012) Potential of hydrothermal treatments in lignocellulose biorefineries. Biofuels Bioprod Bioresour 6:219–232. doi: 10.1002/bbb.339 CrossRefGoogle Scholar
  6. 6.
    Wilkinson S, Smart KA, Cook DJ (2015) Optimising the (microwave) hydrothermal pretreatment of brewers spent grains for bioethanol production. J Fuels. doi: 10.1155/2015/369283 Google Scholar
  7. 7.
    Liu ZH, Qin L, Zhu JQ, Li BZ, Yuan YI (2014) Simultaneous saccharification and fermentation of steam-exploded corn stover at high glucan loading and high temperature. Biotechnol Biofuels 7:167. doi: 10.1186/s13068-014-0167-x CrossRefGoogle Scholar
  8. 8.
    Papa G, Rodriguez S, George A, Schievano A, Orzi V, Sale KL, Singh S, Adani F, Simmons BA (2015) Comparison of different pretreatments for the production of bioethanol and biomethane from corn stover and switchgrass. Bioresour Technol 183:101–110. doi: 10.1016/j.biortech.2015.01.121 CrossRefGoogle Scholar
  9. 9.
    Bals BD, Gunawan C, Moore J, Teymouri F, Dale BE (2014) Enzymatic hydrolysis of pelletized AFEX™-treated corn stover at high solid loadings. Biotechnol Bioeng 111:264–271. doi: 10.1002/bit.25022 CrossRefGoogle Scholar
  10. 10.
    Avci A, Saha BC, Dien BS, Kennedy GJ, Cotta MA (2013) Response surface optimization of corn stover pretreatment using dilute phosphoric acid for enzymatic hydrolysis and ethanol production. Bioresour Technol 130:603–612. doi: 10.1016/j.biortech.2012.12.104 CrossRefGoogle Scholar
  11. 11.
    Varga E, Klinke HB, Réczey K, Thomsen AB (2004) High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnol Bioeng 88:567–574. doi: 10.1002/bit.20222 CrossRefGoogle Scholar
  12. 12.
    Zu S, Li WZ, Zhang M, Li Z, Wang Z, Jameel H, Chang HM (2014) Pretreatment of corn stover for sugar production using dilute hydrochloric acid followed by lime. Bioresour Technol 152:364–370. doi: 10.1016/j.biortech.2013.11.034 CrossRefGoogle Scholar
  13. 13.
    Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19:1109–1117. doi: 10.1021/bp0340180 CrossRefGoogle Scholar
  14. 14.
    Gerbens-Leenes PW, Hoekstraa Y, van der Meer T (2009) The water footprint of energy from biomass: a quantitative assessment and consequences of an increasing share of bio-energy in energy supply. Ecol Econ 68:1052–1060. doi: 10.1016/j.ecolecon.2008.07.013 CrossRefGoogle Scholar
  15. 15.
    Szijártó N, Horan E, Zhang J, Puranen T, Siika-aho M, Viikari L (2011) Thermostable endoglucanases in the liquefaction of hydrothermally pretreated wheat straw. Biotechnol Biofuels 4:2. doi: 10.1186/1754-6834-4-2 CrossRefGoogle Scholar
  16. 16.
    Matsakas L, Christakopoulos P (2013) Fermentation of liquefacted hydrothermally pretreated sweet sorghum bagasse to ethanol at high-solids content. Bioresour Technol 127:202–208. doi: 10.1016/j.biortech.2012.09.107 CrossRefGoogle Scholar
  17. 17.
    Paschos T, Xiros C, Christakopoulos P (2015) Simultaneous saccharification and fermentation by co-cultures of Fusarium oxysporum and Saccharomyces cerevisiae enhances ethanol production from liquefied wheat straw at high solid content. Ind Crops Prod 76:793–802. doi: 10.1016/j.indcrop.2015.07.061 CrossRefGoogle Scholar
  18. 18.
    Zhang J, Chu D, Huang J, Yu Z, Dai G, Bao J (2010) Simultaneous saccharification and ethanol fermentation at high corn stover solids loading in a helical stirring bioreactor. Biotechnol Bioeng 105:718–728. doi: 10.1002/bit.22593 Google Scholar
  19. 19.
    Jørgensen H, Vibe-Pedersen J, Larsen J, Felby C (2007) Liquefaction of lignocellulose at high-solids concentrations. Biotechnol Bioeng 96:862–870. doi: 10.1002/bit.21115 CrossRefGoogle Scholar
  20. 20.
    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass. In: Laboratory analytical procedure (LAP), NREL/TP-510-42618Google Scholar
  21. 21.
    Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. doi: 10.1021/ac60147a030 CrossRefGoogle Scholar
  22. 22.
    Garrote G, Domínguez H, Parajó JC (1999) Hydrothermal processing of lignocellulosic materials. Holz als Roh Werkst 57:191–202. doi: 10.1007/s001070050039 CrossRefGoogle Scholar
  23. 23.
    Overend RP, Chornet E, Gascoigne JA (1987) Fractionation of lignocellulosics by steam-aqueous pretreatments (and discussion). Philos Trans R Soc A Math Phys Eng Sci 321:523–536. doi: 10.1098/rsta.1987.0029 CrossRefGoogle Scholar
  24. 24.
    Öhgren K, Bura R, Saddler J, Zacchi G (2007) Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour Technol 98:2503–2510. doi: 10.1016/j.biortech.2006.09.003 CrossRefGoogle Scholar
  25. 25.
    Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenerg 46:70–78. doi: 10.1016/j.biombioe.2012.03.026 CrossRefGoogle Scholar
  26. 26.
    Stickel JJ, Knutsen JS, Liberatore MW, Luu W, Bousfield DW, Klingenberg DJ, Scott CT, Root TW, Ehrhardt MR, Monz TO (2009) Rheology measurements of a biomass slurry: an inter-laboratory study. Rheol Acta 48:1005–1015. doi: 10.1007/s00397-009-0382-8 CrossRefGoogle Scholar
  27. 27.
    Avci A, Saha BC, Kennedy GJ, Cotta MA (2013) Dilute sulfuric acid pretreatment of corn stover for enzymatic hydrolysis and efficient ethanol production by recombinant Escherichia coli FBR5 without detoxification. Bioresour Technol 142:312–319. doi: 10.1016/j.biortech.2013.05.002 CrossRefGoogle Scholar
  28. 28.
    Xu J, Thomsen MH, Thomsen AB (2010) Investigation of acetic acid-catalyzed hydrothermal pretreatment on corn stover. Appl Microbiol Biotechnol 86:509–516. doi: 10.1007/s00253-009-2340-x CrossRefGoogle Scholar
  29. 29.
    Zhao J, Xia L (2009) Simultaneous saccharification and fermentation of alkaline-pretreated corn stover to ethanol using a recombinant yeast strain. Fuel Process Technol 90:1193–1197. doi: 10.1016/j.fuproc.2009.05.018 CrossRefGoogle Scholar
  30. 30.
    Wan C, Li Y (2010) Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresour Technol 101:6398–6403. doi: 10.1016/j.biortech.2010.03.070 CrossRefGoogle Scholar
  31. 31.
    Lu Y, Wang Y, Xu G, Chu J, Zhuang Y, Zhang S (2010) Influence of high solid concentration on enzymatic hydrolysis and fermentation of steam-exploded corn stover biomass. Appl Biochem Biotechnol 160:360–369. doi: 10.1007/s12010-008-8306-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Constantinos Katsimpouras
    • 1
  • Paul Christakopoulos
    • 2
  • Evangelos Topakas
    • 1
    Email author
  1. 1.Biotechnology Laboratory, School of Chemical EngineeringNational Technical University of AthensAthensGreece
  2. 2.Biochemical and Chemical Process Engineering, Division of Sustainable Process Engineering, Department of Civil, Environmental and Natural Resources EngineeringLuleå University of TechnologyLuleåSweden

Personalised recommendations