Skip to main content
Log in

Controlling filamentous fungi morphology with microparticles to enhanced β-mannanase production

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

β-mannanase was produced mainly by Aspergillus species and can degrade the β-1,4-mannose linkages of galactomannans. This study was undertaken to enhance mannanase production using talcum and aluminum oxide as the microparticles, which control cell morphology of recombinant Aspergillus sojae in glucose and carob extract medium. Both microparticles improved fungal growth in glucose and carob pod extract medium. Aluminum oxide (1 g/L) was the best agent for glucose medium which resulted in 514.0 U/ml. However, the highest mannanase activity was found as 568.7 U/ml with 5 g/L of talcum in carob extract medium. Increase in microparticle concentration resulted in decreasing the pellet size diameter. Furthermore, more than 10 g/L of talcum addition changed the filamentous fungi growth type from pellet to pellet/mycelium mixture. Results showed that right type and concentration of microparticle in fermentation media improved the mannanase activity and production rate by controlling the growth morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aehle W (2004) Enzymes in industry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  2. Rosengren A, Reddy SK, Sjöberg JS, Aurelius O, Logan DT, Kolenova K, Stalbrand H (2014) An Aspergillus nidulans β-mannanase with high transglycosylation capacity revealed through comparative studies within glycosidase family 5. Appl Microbiol Biot 98(24):10091–10104

    Article  CAS  Google Scholar 

  3. Van Zyl WH, Rose SH, Trollope K, Görgens JF (2010) Fungal β-mannanases: mannan hydrolysis, heterologous production and biotechnological applications. Process Biochem 45:1203–1213

    Article  Google Scholar 

  4. Lu H, Luo H, Shi P, Huang H, Meng K, Yang P, Yao B (2014) A novel thermophilic endo-β-1,4 mannanase from Aspergillus nidulans XZ3: functional roles of carbohydrate-binding module and Thr/Ser rich linker region. Appl Microbiol Biot 98:2155–2163

    Article  CAS  Google Scholar 

  5. Lin SS, Dou WF, Xu HY, Li HZ, Xu ZH, Ma YH (2007) Optimization of medium composition for the production of alkaline β-mannanase by alkaliphilic Bacillus sp. N16-5 using response surface methodology. Appl Microbiol Biot 75(5):1015–1022

    Article  CAS  Google Scholar 

  6. Huang JL, Bao LX, Zou HY, Che SG, Wang GX (2012) High-level production of a cold-active β-mannanase from Bacillus subtilis Bs5 and its molecular cloning and expression. Mol Genet Microbiol Virol 27(4):147–153

    Article  Google Scholar 

  7. Feng Y, He Z, Ong SL, Hu J, Zhang Z, Ng WJ (2003) Optimization of agitation, aeration, and temperature conditions for maximum β-mannanase production. Enzyme Microb Tech 32:282–289

    Article  CAS  Google Scholar 

  8. Katrolia P, Yan Q, Zhang P, Zhou P, Yang S, Jiang Z (2013) Gene cloning and enzymatic characterization of an alkali-tolerant endo-1,4-β-mannanase from Rhizomucor miehei. J Agr Food Chem 61:394–401

    Article  CAS  Google Scholar 

  9. Yin JS, Liang QL, Li DM, Sun ZT (2012) Optimization of production conditions for β-mannanase using apple pomace as raw material in solid-state fermentation. Ann Microbiol 63:101–108

    Article  Google Scholar 

  10. Wang J, Shao Z, Hong Y, Li C, Fu X, Liu Z (2010) A novel β-mannanase from Pantoea agglomerans A021: gene cloning, expression, purification and characterization. World J Microbiol Biotechnol 26:1777–1784

    Article  CAS  Google Scholar 

  11. Chen X, Cao Y, Ding Y, Lu W, Li D (2007) Cloning, functional expression and characterization of Aspergillus sulphures β-mannanase in Pichia pastoris. J Biotechnol 128:452–461

    Article  CAS  Google Scholar 

  12. Luo H, Wang K, Huang H, Shi P, Yang P, Yao B (2012) Gene cloning, expression, and biochemical characterization of an alkali-tolerant β-mannanase from Humicola insolens Y1. J Ind Microbiol Biot 39:547–555

    Article  CAS  Google Scholar 

  13. Wang Y, Shi P, Luo H, Bai Y, Huang H, Yang P, Xiong H, Yao B (2012) Cloning, over-expression and characterization of an alkali-tolerant endo-β-1,4-mannanase from Penicillium freii F63. J Biosci Bioeng 113(6):710–714

    Article  CAS  Google Scholar 

  14. Großwindhager C, Sachslehner A, Nidetzky B, Haltrich D (1999) Endo-β-1,4-D-mannanase is efficiently produced by Sclerotium (Athelia) rolfsii under derepressed conditions. J Biotechnol 67(2–3):189–203

    Article  Google Scholar 

  15. Ozturk B, Cekmecelioglu D, Ogel ZB (2010) Optimal conditions for enhanced β-mannanase production by recombinant Aspergillus sojae. J Mol Catal B Enzym 64:135–139

    Article  CAS  Google Scholar 

  16. Turhan I, Bialka KL, Demirci A, Karhan M (2010) Ethanol production from carob extract by using Saccharomyces cerevisiae. Bioresour Tech 101:5290–5296

    Article  CAS  Google Scholar 

  17. Yatmaz E, Turhan I, Karhan M (2013) Optimization of ethanol production from carob pod extract using immobilized saccharomyces cerevisiae cells in a stirred tank bioreactor. Bioresour Tech 135:365–371

    Article  Google Scholar 

  18. Kaup BA, Ehrich K, Pescheck M, Schrader J (2008) Microparticle-enhanced cultivation of filamentous microorganisms: increased chloroperoxidase formation by Caldariomyces fumago as an example. Biotechnol Bioeng 99(3):491–498

    Article  CAS  Google Scholar 

  19. Driouch H, Hänsch R, Wucherpfennig T, Krull R, Wittman C (2012) Improved enzyme production by bio-pellets of Aspergillus niger: targeted morphology engineering using titanate microparticles. Biotechnol Bioeng 105(6):1058–1068

    Google Scholar 

  20. Driouch H, Sommer B, Wittman C (2010) Morphology engineering of Aspergillus niger for improved enzyme production. Biotechnol Bioeng 109(2):462–471

    Article  Google Scholar 

  21. Coban HB, Demirci A, Turhan I (2015) Microparticle-enhanced Aspergillus ficuum phytase production and evaluation of fungal morphology in submerged fermentation. Bioprocess Biosyst Eng 38(6):1075–1080

    Article  CAS  Google Scholar 

  22. Coban HB, Demirci A, Turhan I (2015) Enhanced Aspergillus ficuum phytase production in fed-batch and continuous fermentations in the presence of talcum microparticles. Bioprocess Biosyst Eng 38(8):1431–1436

    Article  CAS  Google Scholar 

  23. Coban HB, Demirci A (2016) Enhancement and modeling of microparticle-added Rhizopus oryzae lactic acid production. Bioprocess Biosyst Eng 39:323–330

    Article  CAS  Google Scholar 

  24. Duruksu G, Ozturk B, Biely P, Bakır U, Ogel ZB (2009) Cloning, expression and characterization of endo-beta-1,4-mannanase from Aspergillus fumigatus in Aspergillus sojae and Pichia pastoris. Biotechnol Progr 25:271–276

    Article  CAS  Google Scholar 

  25. Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing methods for assay of xylanase activity. J Biotechnol 23:257–270

    Article  CAS  Google Scholar 

  26. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the TUBITAK foundation (Project number: 112 O 167) and Akdeniz University Research Foundation (Project numbers: 2013.12.0102.017 and FDK-2015-681).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İrfan Turhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yatmaz, E., Karahalil, E., Germec, M. et al. Controlling filamentous fungi morphology with microparticles to enhanced β-mannanase production. Bioprocess Biosyst Eng 39, 1391–1399 (2016). https://doi.org/10.1007/s00449-016-1615-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1615-8

Keywords

Navigation