Skip to main content
Log in

Optimization of staged bioleaching of low-grade chalcopyrite ore in the presence and absence of chloride in the irrigating lixiviant: ANFIS simulation

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this investigation, copper was bioleached from a low-grade chalcopyrite ore using a chloride-containing lixiviant. In this regard, firstly, the composition of the bacterial culture media was designed to control the cost in commercial application. The bacterial culture used in this process was acclimated to the presence of chloride in the lixiviant. Practically speaking, the modified culture helped the bio-heap-leaching system operate in the chloridic media. Compared to the copper recovery from the low-grade chalcopyrite by bioleaching in the absence of chloride, bioleaching in the presence of chloride resulted in improved copper recovery. The composition of the lixiviant used in this study was a modification with respect to the basal salts in 9 K medium to optimize the leaching process. When leaching the ore in columns, 76.81 % Cu (based on solid residues of bioleaching operation) was recovered by staged leaching with lixiviant containing 34.22 mM NaCl. The quantitative findings were supported by SEM/EDS observations, X-ray elemental mapping, and mineralogical analysis of the ore before and after leaching. Finally, Adaptive neuro-fuzzy inference system (ANFIS) was used to simulate the operational parameters affecting the bioleaching operation in chloride–sulfate system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. 3 different sizes of crushed ore, d80 = 10 mm meaning that the 80 % of the ore passes through a sieve aperture of 10 mm, and so on.

References

  1. Dimitrijevic M, Kostov A, Tasic V, Milosevic N (2009) Influence of pyrometallurgical copper production on the environment. J Hazard Mater 164:892–899

    Article  CAS  Google Scholar 

  2. Behrad-Vakylabad A, Schaffie M, Ranjbar M, Manafi Z, Darezereshki E (2012) Bio-processing of copper from combined smelter dust and flotation concentrate: a comparative study on the stirred tank and airlift reactors. J Hazard Mater 241–242:197–206

    Article  Google Scholar 

  3. Gallios GP, Matis KA (1998) Mineral Processing and the Environment. In: Torkman A, Mordogan H (eds) Proceedings of the NATO Advanced Study Institute on Mineral Processing and Environment: Improving the Quality of Dur UfeVarna, Bulgaria, Legal Framework For Environmental Protection In Mineral Processing Actmties. pp 73–82

  4. Madani K (2014) Water management in Iran: what is causing the looming crisis? J Environ Stud Sci 4:315–328

    Article  Google Scholar 

  5. Norris PR, Davis-Belmar CS, Nicolle JLC, Calvo-Bado LA, Angelatou V (2010) Pyrite oxidation and copper sulfide ore leaching by halotolerant, thermotolerant bacteria. Hydrometallurgy 104:432–436

    Article  CAS  Google Scholar 

  6. Robertson SW, Van-Staden PJ, Seyedbagheri A (2012) Advances in high-temperature heap leaching of refractory copper sulfide ores. J South Afr Inst Min Metall 112:1045–1050

    Google Scholar 

  7. Watling HR (2006) The bioleaching of sulphide minerals with emphasis on copper sulphides—a review. Hydrometallurgy 84:81–108

    Article  CAS  Google Scholar 

  8. Vilcáez J, Inoue C (2009) Mathematical modeling of thermophilic bioleaching of chalcopyrite. Miner Eng 22:951–960

    Article  Google Scholar 

  9. Dopson M, Lövgren L, Boström D (2009) Silicate mineral dissolution in the presence of acidophilic microorganisms: implications for heap bioleaching. Hydrometallurgy 96:288–293

    Article  CAS  Google Scholar 

  10. Daoud J, Karamanev D (2006) Formation of jarosite during Fe2+ oxidation by Acidithiobacillus ferrooxidans. Miner Eng 19:960–967

    Article  CAS  Google Scholar 

  11. Kinnunen PH-M, Heimala S, Riekkola-Vanhanen M-L, Puhakka JA (2006) Chalcopyrite concentrate leaching with biologically produced ferric sulphate. Bioresour Technol 97:1727–1734

    Article  CAS  Google Scholar 

  12. Senanayake G (2009) A review of chloride assisted copper sulfide leaching by oxygenated sulfuric acid and mechanistic considerations. Hydrometallurgy 98:21–32

    Article  CAS  Google Scholar 

  13. Ruiz MC, Montes KS, Padilla R (2011) Chalcopyrite leaching in sulfate–chloride media at ambient pressure. Hydrometallurgy 109:37–42

    Article  CAS  Google Scholar 

  14. Carneiro MFC, Leão VA (2007) The role of sodium chloride on surface properties of chalcopyrite leached with ferric sulphate. Hydrometallurgy 87:73–82

    Article  CAS  Google Scholar 

  15. Li J, Kawashima N, Kaplun K, Absolon VJ, Gerson AR (2010) Chalcopyrite leaching: the rate controlling factors. Geochim Cosmochim Acta 74:2881–2893

    Article  CAS  Google Scholar 

  16. Lu ZY, Jeffrey MI, Lawson F (2000) The effect of chloride ions on the dissolution of chalcopyrite in acidic solutions. Hydrometallurgy 56:189–202

    Article  CAS  Google Scholar 

  17. O’Brien RT, MacDonald CA, Meadows NE (1999) Chloride–sulphate leaching from chalcopyrite ores from Sabah. ALTA Copper Sulphides Symposium and Copper Hydrometallurgy Forum (Gold Coast, QLD). ALTA Metallurgical Services, Melbourne

  18. Davis-Belmar CS, Cautivo D, Demergasso C, Rautenbach G (2014) Bioleaching of copper secondary sulfide ore in the presence of chloride by means of inoculation with chloride-tolerant microbial culture. Hydrometallurgy 150:308–312

    Article  CAS  Google Scholar 

  19. Rea SM, McSweeney NJ, Degens BP, Morris C, Siebert HM, Kaksonen AH (2015) Salt-tolerant microorganisms potentially useful for bioleaching operations where fresh water is scarce. Miner Eng 75:126–132

    Article  CAS  Google Scholar 

  20. Behrad-Vakylabad A (2011) A comparison of bioleaching ability of mesophilic and moderately thermophilic culture on copper bioleaching from flotation concentrate and sme lter dust. Int J Miner Process 101:94–99

    Article  Google Scholar 

  21. Behrad-Vakylabad A, Ranjbar M, Manafi Z, Bakhtiari F (2011) Tank bioleaching of copper from combined flotation concentrate and smelter dust. Int Biodeter Biodegr 65:1208–1214

    Article  Google Scholar 

  22. Vethosodsakda T, Free ML, Janwong A, Moats MS (2013) Evaluation of liquid retention capacity measurements as a tool for estimating optimal ore agglomeration moisture content. Int J Miner Process 119:58–64

    Article  CAS  Google Scholar 

  23. Norris PR, Calvo-Bado LA, Brown CF, Davis-Belmar CS (2012) Ore column leaching with thermophiles: I, copper sulfide ore. Hydrometallurgy 127–128:62–69

    Article  Google Scholar 

  24. Panda S, Sanjay K, Sukla LB, Pradhan N, Subbaiah T, Mishra BK, Prasad MSR, Ray SK (2012) Insights into heap bioleaching of low grade chalcopyrite ores—a pilot scale study. Hydrometallurgy 125–126:157–165

    Article  Google Scholar 

  25. Gahan CS, Sundkvist JE, Dopson M, Sandström A (2010) Effect of chloride on ferrous iron oxidation by a Leptospirillum ferriphilum-dominated chemostat culture. Biotechnol Bioeng 106:422–431

    CAS  Google Scholar 

  26. Nicol M, Miki H, Velásquez-Yévenes L (2010) The dissolution of chalcopyrite in chloride solutions Part 3. Mechanisms. Hydrometallurgy 103:86–95

    Article  CAS  Google Scholar 

  27. Bevilaqua D, Lahti H, Suegama PH, Garcia O Jr, Benedetti AV, Puhakka JA, Tuovinen OH (2013) Effect of Na-chloride on the bioleaching of a chalcopyrite concentrate in shake flasks and stirred tank bioreactors. Hydrometallurgy 138:1–13

    Article  CAS  Google Scholar 

  28. Xu X, Chen C, Lee D-J, Wang A, Guo W, Zhou X, Guo H, Yua Y, Ren N, Chang J-S (2013) Sulfate-reduction, sulfide-oxidation and elemental sulfur bioreduction process: modeling and experimental validation. Bioresour Technol 147:202–211

    Article  CAS  Google Scholar 

  29. Subramanian KN, Ferrajuolo R (1976) Oxygen pressure leaching of fe-ni-cu sulfide concentrates at 110 °C—effect of low chloride addition. Hydrometallurgy 2:117–125

    Article  CAS  Google Scholar 

  30. Watling HR (2013) Chalcopyrite hydrometallurgy at atmospheric pressure: 1. Review of acidic sulfate, sulfate–chloride and sulfate–nitrate process options. Hydrometallurgy 140:163–180

    Article  CAS  Google Scholar 

  31. Torres CM, Taboada ME, Graber TA, Herreros OO, Ghorbani Y, Watling HR (2015) The effect of seawater based media on copper dissolution from low-grade copper ore. Miner Eng 71:139–145

    Article  CAS  Google Scholar 

  32. Stefánsson A, Lemke KH, Seward TM (2008) Iron(III) complexation in hydrothermal solutions—An experimental and theoretical study, P R E P R I N T—ICPWS XV, Berlin

  33. Hein H, Joly P (2011) Metallurgical performance and characteristics of small and medium size copper SX plants in Chile, ISEC, 1–8. 19th international solvent extraction conference, 2011, Santiago, Chile

  34. Oishi T, Koyama K, Alam S, Tanaka M, Lee J-C (2007) Recovery of high purity copper cathode from printed circuit boards using ammoniacal sulfate or chloride solutions. Hydrometallurgy 89:82–88

    Article  CAS  Google Scholar 

  35. Winand R (1991) Chloride hydrometallurgy. Hydrometallurgy 27:285–316

    Article  CAS  Google Scholar 

  36. Ghorbani Y, Becker M, Mainza A, Franzidis J-P, Petersen J (2011) Large particle effects in chemical/biochemical heap leach processes—a review. Miner Eng 24:1172–1184

    Article  CAS  Google Scholar 

  37. Kodali P, Dhawan N, Depci T, Lin CL, Miller JD (2011) Particle damage and exposure analysis in HPGR crushing of selected copper ores for column leaching. Miner Eng 24:1478–1487

    Article  CAS  Google Scholar 

  38. Ghorbani Y, Becker M, Petersen J, Mainza AN, Franzidis J-P (2013) Investigation of the effect of mineralogy as rate-limiting factors in large particle leaching. Miner Eng 52:38–51

    Article  CAS  Google Scholar 

  39. Ghorbani Y, Mainza AN, Petersen J, Becker M, Franzidis J-P, Kalala JT (2013) Investigation of particles with high crack density produced by HPGR and its effect on the redistribution of the particle size fraction in heaps. Miner Eng 43–44:44–51

    Article  Google Scholar 

  40. Velásquez-Yévenes L, Nicol M, Miki H (2010) The dissolution of chalcopyrite in chloride solutions Part 1. The effect of solution potential. Hydrometallurgy 103:108–113

    Article  Google Scholar 

  41. Ramkumar KB, Chidambaram M (1995) Fuzzy self-tuning PI controller for bioreactors. Bioprocess Eng 12:263–267

    Article  CAS  Google Scholar 

  42. Cakmakci M (2007) Adaptive neuro-fuzzy modelling of anaerobic digestion of primary sedimentation sludge. Bioprocess Biosyst Eng 30:349–357

    Article  CAS  Google Scholar 

  43. Turek M, Heiden W, Riesen A, Chhabda TA, Schubert J, Zander W, Krüger P, Keusgen M, Schöning MJ (2009) Artificial intelligence/fuzzy logic method for analysis of combined signals from heavy metal chemical sensors. Electrochim Acta 54:6082–6088

    Article  CAS  Google Scholar 

  44. Ross TJ (2010) Fuzzy logic with engineering applications, 3rd ed, ISBN: 97 8-0-470-74376-8. Wiley, Ltd., pp 100–116

  45. Mabuchi S (1993) A proposal for a defuzzification strategy by the concept of sensitivity analysis. Fuzzy Sets Syst 55:1–14

    Article  Google Scholar 

  46. Kukolj D (2002) Design of adaptive Takagi–Sugeno–Kang fuzzy models. Appl Soft Comput 2:89–103

    Article  Google Scholar 

  47. Karaman S, Kayacier A (2011) Effect of temperature on rheological characteristics of molasses: modeling of apparent viscosity using Adaptive Neuro e Fuzzy Inference System (ANFIS). LWT Food Sci Technol 44:1717–1725

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Founding for this work provided by National Iranian Copper Industries Company deserves our compliments and appreciations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Behrad Vakylabad.

Appendix 1: Designed and optimized ANFIS to predict copper recovery from bioleaching operation

Appendix 1: Designed and optimized ANFIS to predict copper recovery from bioleaching operation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakylabad, A.B., Schaffie, M., Naseri, A. et al. Optimization of staged bioleaching of low-grade chalcopyrite ore in the presence and absence of chloride in the irrigating lixiviant: ANFIS simulation. Bioprocess Biosyst Eng 39, 1081–1104 (2016). https://doi.org/10.1007/s00449-016-1586-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1586-9

Keywords

Navigation