Skip to main content
Log in

Exploration of photocatalytic properties of microbially designed silver nanoparticles on Victoria blue B

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Victoria blue B (VBB) belongs to triphenylmethane group of dyes, which is widely used in textile industries. Hence development of novel treatment methods are of considerable applications in its removal. In the current study, silver nanoparticles (AgNPs) formed by Bacillus amyloliquefaciens was investigated for the degradation of VBB. Interestingly, the UV–Vis spectroscopy analysis of VBB-AgNPs treated samples showed a decrease in absorption at 615 nm, which is characteristic of pure VBB. This time-dependent degradation process was further investigated by changing the initial dye concentration, AgNPs concentration and pH. Approximately 78 % of reduction was observed within 8 h of the study and hence the result of the study is with promising applications for the development of novel dye degradation technologies. Phytotoxicity analysis of degradation product using Vigna unguiculata revealed the non-toxic effect of degradation product when compared to VBB and this confirms the promising potential and applications of the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wu ZC, Zhang Y, Tao TX, Zhang L, Fong H (2010) Silver nanoparticles on amidoxime fibers for photocatalytic degradation of organic dyes in waste water. Appl Surf Sci 257:1092–1097

    Article  CAS  Google Scholar 

  2. Baban A, Yediler A, Ciliz NK (2010) Integrated water management and CP implementation for wool and textile blend processes. Clean 38:84–90

    CAS  Google Scholar 

  3. Hao OJ, Kim H, Chiang P-C (2000) Decolorization of wastewater. Crit Rev Environ Sci Technol 30:449–505

    Article  CAS  Google Scholar 

  4. Gomaa OM, Linz JE, Reddy CA (2008) Decolorization of Victoria blue by the white rot fungus, Phanerochaete chrysosporium. World J Microbiol Biotechnol 24:2349–2356

    Article  Google Scholar 

  5. Schulte E, Wittekind D, Kretschmer V (1988) Victoria blue B—a nuclear stain for cytology. A cytophotometric study. Histochemistry 88:427–433

    CAS  Google Scholar 

  6. Cho BP, Yang T, Blankenship LR, Moody JD, Churchwell M, Beland FA, Culp SJ (2003) Synthesis and characterization of N-demethylated metabolites of malachite green and leucomalachite green. Chem Res Toxicol 16:285–294

    Article  CAS  Google Scholar 

  7. Chen CC, Chen CY, Cheng CY, Teng PY, Chung YC (2011) Decolorization characteristics and mechanism of Victoria Blue R removal by Acinetobacter calcoaceticus YC210. J Hazard Mater 196:166–172

    Article  CAS  Google Scholar 

  8. Chen KT, Lu CS, Chang TH, Lai YY, Chang TH, Wu CW, Chen CC (2010) Comparison of photodegradative efficiencies and mechanisms of Victoria Blue R assisted by Nafion-coated and fluorinated TiO2 photocatalysts. J Hazard Mater 174:598–609

    Article  CAS  Google Scholar 

  9. Patterson HH, Gomez RS, Lu H, Yson RL (2007) Nanoclusters of silver doped in zeolites as photocatalysts. Catal Today 120:168–173

    Article  CAS  Google Scholar 

  10. Kang SF, Liao CH, Po ST (2000) Decolorization of textile wastewater by photo-fenton oxidation technology. Chemosphere 41:1287–1294

    Article  CAS  Google Scholar 

  11. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706

    Article  CAS  Google Scholar 

  12. Jiang ZJ, Liu CY, Sun LW (2005) Catalytic properties of silver nanoparticles supported on silica spheres. J Phys Chem B 109:1730–1735

    Article  CAS  Google Scholar 

  13. MeenaKumari M, Philip D (2015) Degradation of environment pollutant dyes using phytosynthesized metal nanocatalysts. Spectrochim Acta Part A 135:632–638

    Article  CAS  Google Scholar 

  14. Chen CC, Liao HJ, Cheng CY, Yen CY, Chung YC (2007) Biodegradation of crystal violet by Pseudomonas putida. Biotechnol Lett 29:391–396

    Article  CAS  Google Scholar 

  15. Roshmi T, Soumya KR, Jyothis M, Radhakrishnan EK (2015) Effect of biofabricated gold nanoparticle-based antibiotic conjugates on minimum inhibitory concentration of bacterial isolates of clinical origin. Gold Bull 48:63–71

    Article  CAS  Google Scholar 

  16. Ogugbue CJ, Sawidis T (2011) Bioremediation and detoxification of synthetic wastewater containing triarylmethane dyes by Aeromonas hydrophila isolated from industrial effluent. Biotechnol Res Int 2011:1–11

    Article  Google Scholar 

  17. Das VL, Thomas R, Varghese RT, Soniya EV, Mathew J, Radhakrishnan EK (2013) Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech 4:121–126

    Article  Google Scholar 

  18. Kalimuthu K, Suresh Babu R, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B Biointerfaces 65:150–153

    Article  CAS  Google Scholar 

  19. Sastry M, Patil V, Sainkar SR (1998) Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films. J Phys Chem B 102:1404–1410

    Article  CAS  Google Scholar 

  20. Ganesh Babu MM, Gunasekaran P (2009) Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Colloids Surf B Biointerfaces 74:191–195

    Article  CAS  Google Scholar 

  21. Scherrer P (1918) Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften, Göttingen. Math Phys Kl 1918:98–100

    Google Scholar 

  22. Kumar P, Govindaraju M, Senthamilselvi S, Premkumar K (2013) Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca. Colloids Surf B Biointerfaces 103:658–661

    Article  CAS  Google Scholar 

  23. Balázs N, Mogyorósi K, Srankó DF, Pallagi A, Alapi T, Oszkó A, Dombi A, Sipos P (2008) The effect of particle shape on the activity of nanocrystalline TiO2 photocatalysts in phenol decomposition. Appl Catal B 84:356–362

    Article  Google Scholar 

  24. Mai FD, Lu CS, Wu CW, Huang CH, Chen JY, Chen CC (2008) Mechanisms of photocatalytic degradation of Victoria Blue R using nano-TiO2. Sep Purif Technol 62:423–436

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge DBT-MSUB program, School of Biosciences for the instrumentation facility for UV–Vis spectrophotometer and International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, India for the help and support for the HR-TEM analysis of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Radhakrishnan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

P. Jishma and R. Thomas contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jishma, P., Thomas, R., Narayanan, R. et al. Exploration of photocatalytic properties of microbially designed silver nanoparticles on Victoria blue B. Bioprocess Biosyst Eng 39, 1033–1040 (2016). https://doi.org/10.1007/s00449-016-1581-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1581-1

Keywords

Navigation