Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass


A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489

    CAS  Article  Google Scholar 

  2. 2.

    Tai C, Keshwani D (2014) Impact of pretreatment with dilute sulfuric acid under moderate temperature on hydrolysis of corn stover with two enzyme systems. Appl Biochem Biotechnol 172(5):2628–2639

    CAS  Article  Google Scholar 

  3. 3.

    Berndes G (2002) Bioenergy and water—the implications of large-scale bioenergy production for water use and supply. Global Environ Change 12(4):253–271. doi:10.1016/S0959-3780(02)00040-7

    Article  Google Scholar 

  4. 4.

    Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109(4):1083–1087

    CAS  Article  Google Scholar 

  5. 5.

    Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19(4):1109–1117

    CAS  Article  Google Scholar 

  6. 6.

    Öhgren K, Bura R, Saddler J, Zacchi G (2007) Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour Technol 98(13):2503–2510. doi:10.1016/j.biortech.2006.09.003

    Article  Google Scholar 

  7. 7.

    Tai C, Keshwani DR, Voltan DS, Kuhar PS, Engel AJ (2015) Optimal control strategy for fed-batch enzymatic hydrolysis of lignocellulosic biomass based on epidemic modeling. Biotechnol Bioeng 112(7):1376–1382

    CAS  Article  Google Scholar 

  8. 8.

    Hodge D, Karim M, Schell D, McMillan J (2009) Model-based fed-batch for high-solids enzymatic cellulose hydrolysis. Appl Biochem Biotechnol 152(1):88–107. doi:10.1007/s12010-008-8217-0

    CAS  Article  Google Scholar 

  9. 9.

    Rosgaard L, Andric P, Dam-Johansen K, Pedersen S, Meyer A (2007) Effects of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw. Appl Biochem Biotechnol 143(1):27–40. doi:10.1007/s12010-007-0028-1

    CAS  Article  Google Scholar 

  10. 10.

    Khamseh AAG, Miccio M (2012) Comparison of batch, fed-batch and continuous well-mixed reactors for enzymatic hydrolysis of orange peel wastes. Process Biochem 47(11):1588–1594. doi:10.1016/j.procbio.2011.10.018

    Article  Google Scholar 

  11. 11.

    Chandra RP, Au-Yeung K, Chanis C, Roos AA, Mabee W, Chung PA, Ghatora S, Saddler JN (2011) The influence of pretreatment and enzyme loading on the effectiveness of batch and fed-batch hydrolysis of corn stover. Biotechnol Prog 27(1):77–85. doi:10.1002/btpr.508

    CAS  Article  Google Scholar 

  12. 12.

    Ros SD, Colusso G, Weschenfelder TA, de Marsillac Terra L, de Castilhos F, Corazza ML, Schwaab M (2013) A comparison among stochastic optimization algorithms for parameter estimation of biochemical kinetic models. Appl Soft Comput 13(5):2205–2214. doi:10.1016/j.asoc.2013.01.019

    Article  Google Scholar 

  13. 13.

    Regunath S, Kadirkamanathan V (2001) Design of a pH control system using fuzzy non-uniform grid scheduling and evolutionary programming. Appl Soft Comput 1(1):91–104. doi:10.1016/S1568-4946(01)00011-4

    Article  Google Scholar 

  14. 14.

    Yager RR, Zadeh LA (2012) An introduction to fuzzy logic applications in intelligent systems. Springer, New York

    Google Scholar 

  15. 15.

    Scherer P, Lehmann K, Schmidt O, Demirel B (2009) Application of a fuzzy logic control system for continuous anaerobic digestion of low buffered, acidic energy crops as mono-substrate. Biotechnol Bioeng 102(3):736–748. doi:10.1002/bit.22108

    CAS  Article  Google Scholar 

  16. 16.

    Traoré A, Grieu S, Puig S, Corominas L, Thiery F, Polit M, Colprim J (2005) Fuzzy control of dissolved oxygen in a sequencing batch reactor pilot plant. Chem Eng J 111(1):13–19. doi:10.1016/j.cej.2005.05.004

    Article  Google Scholar 

  17. 17.

    Wan J, Huang M, Ma Y, Guo W, Wang Y, Zhang H, Li W, Sun X (2011) Prediction of effluent quality of a paper mill wastewater treatment using an adaptive network-based fuzzy inference system. Appl Soft Comput 11(3):3238–3246. doi:10.1016/j.asoc.2010.12.026

    Article  Google Scholar 

  18. 18.

    Tai C, Arellano MG, Keshwani DR (2014) Epidemic based modeling of enzymatic hydrolysis of lignocellulosic biomass. Biotechnol Prog 30(5):1021–1028

    CAS  Article  Google Scholar 

  19. 19.

    Tai C, Keshwani DR (2014) Enzyme adsorption and cellulose conversion during hydrolysis of dilute-acid-pretreated corn stover. Energy Fuels 28(3):1956–1961

    CAS  Article  Google Scholar 

  20. 20.

    Adney B, Baker J (1996) Measurement of cellulase activities. Laboratory analytical procedure, vol 6. National Renewable Energy Laboratory (NREL), Golden

    Google Scholar 

  21. 21.

    Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C, Sluiter J, Templeton D, Wolfe J (2008) Determination of total solids in biomass and total dissolved solids in liquid process samples. National Renewable Energy Laboratory (NREL), Golden

    Google Scholar 

  22. 22.

    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2011) Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory (NREL), Golden

    Google Scholar 

  23. 23.

    Ross TJ (2009) Fuzzy logic with engineering applications. Wiley, New York

    Google Scholar 

  24. 24.

    Kuhad RC, Mehta G, Gupta R, Sharma KK (2010) Fed batch enzymatic saccharification of newspaper cellulosics improves the sugar content in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae. Biomass Bioenergy 34(8):1189–1194. doi:10.1016/j.biombioe.2010.03.009

    CAS  Article  Google Scholar 

  25. 25.

    Wanderley MCdA, Martín C, Rocha GJdM, Gouveia ER (2013) Increase in ethanol production from sugarcane bagasse based on combined pretreatments and fed-batch enzymatic hydrolysis. Bioresour Technol 128:448–453. doi:10.1016/j.biortech.2012.10.131

    Article  Google Scholar 

  26. 26.

    Morales-Rodríguez R, Capron M, Huusom JK, Sin G (2010) Controlled fed-batch operation for improving cellulose hydrolysis in 2G bioethanol production. Comput Aided Chem Eng 28:1497–1502

    Google Scholar 

  27. 27.

    Kristensen J, Felby C, Jorgensen H (2009) Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels 2(1):11

    Article  Google Scholar 

  28. 28.

    Yang M, Li W, Liu B, Li Q, Xing J (2010) High-concentration sugars production from corn stover based on combined pretreatments and fed-batch process. Bioresour Technol 101(13):4884–4888

    CAS  Article  Google Scholar 

  29. 29.

    Selig M, Weiss N, Ji Y (2008) Enzymatic saccharification of lignocellulosic biomass. National Renewable Energy Laboratory (NREL), Golden

    Google Scholar 

Download references


This work was carried out with funding from a strategic research grant from the Institute of Agriculture and Natural Resources at the University of Nebraska. The authors would like to thank Novozymes North America Inc. for providing CTec2 and Mr. Aaron Engel for considerable help of LabVIEW programming.

Author information



Corresponding author

Correspondence to Deepak R. Keshwani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tai, C., Voltan, D.S., Keshwani, D.R. et al. Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass. Bioprocess Biosyst Eng 39, 937–944 (2016). https://doi.org/10.1007/s00449-016-1573-1

Download citation


  • Fuzzy logic
  • Enzymatic hydrolysis
  • Feedback control
  • Bioconversion
  • Biofuels