Skip to main content

Advertisement

Log in

Enzymatic formation of carbohydrate rings catalyzed by single-walled carbon nanotubes

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Macrocyclic carbohydrate rings were formed via enzymatic reactions around single-walled carbon nanotubes (SWNTs) as a catalyst. Cyclodextrin glucanotransferase, starch substrate and SWNTs were reacted in buffer solution to yield cyclodextrin (CD) rings wrapped around individual SWNTs. Atomic force microscopy showed the resulting complexes to be rings of 12–50 nm in diameter, which were highly soluble and dispersed in aqueous solution. They were further characterized by Raman and Fourier transform infrared spectroscopy and molecular simulation using density functional theory calculation. In the absence of SWNT, hydrogen bonding between glucose units determines the structure of maltose (the precursor of CD) and produces the curvature along the glucose chain. Wrapping SWNT along the short axis was preferred with curvature in the presence of SWNTs and with the hydrophobic interactions between the SWNTs and CD molecules. This synthetic approach may be useful for the functionalization of carbon nanotubes for development of nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Lu W, Zu M, Byun J-H, Kim B-S, Chou T-W (2012) State of the art of carbon nanotube fibers: opportunities and challenges. Adv Mater 24:1805–1833

    Article  CAS  Google Scholar 

  2. Chen X, Lee GS, Zettl A, Bertozzi CR (2004) Biomimetic engineering of carbon nanotubes by using cell surface mucin mimics. Angew Chem Int Ed 43:6111–6116

    Article  CAS  Google Scholar 

  3. Sun Y-P, Fu K, Lin Y, Huang W (2002) Functionalized carbon nanotubes: Properties and applications. Acc Chem Res 35:1096–1104

    Article  CAS  Google Scholar 

  4. Kuang Z, Kim SN, Crookes-Goodson WJ, Farmer BL, Naik RR (2009) Biomimetic chemosensor: Designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors. ACS Nano 4:452–458

    Article  Google Scholar 

  5. Zhang X, Meng L, Lu Q (2009) Cell behaviors on polysaccharide-wrapped single-wall carbon nanotubes: A quantitative study of the surface properties of biomimetic nanofibrous scaffolds. ACS Nano 3:3200–3206

    Article  CAS  Google Scholar 

  6. Park TJ, Park TP, Lee SJ, Jung DH, Ko Y-K, Jung HT, Lee SY (2011) Alignment of SWNTs by protein-ligand interaction of functionalized magnetic particles under low magnetic fields. J Nanosci Nanotechnol 11:4540–4545

    Article  CAS  Google Scholar 

  7. Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679

    Article  CAS  Google Scholar 

  8. Jacobs CB, Peairs MJ, Venton BJ (2010) Review: Carbon nanotube based electrochemical sensors for biomolecules. Anal Chim Acta 662:105–127

    Article  CAS  Google Scholar 

  9. Zheng L, Jain D, Burke P (2009) Nanotube-peptide interactions on a silicon chip. J Phys Chem C 113:3978–3985

    Article  CAS  Google Scholar 

  10. Bonnet P, Albertini D, Bizot H, Bernard A, Chauvet O (2007) Amylose/SWNT composites: from solution to film—synthesis, characterization and properties. Composites Sci Technol 67:817–821

    Article  CAS  Google Scholar 

  11. Yan L, Chang P, Cheng P (2011) Preparation and characterization of starch-grafted multiwall carbon nanotube composites. Carbohydr Polym 84:1378–1383

    Article  CAS  Google Scholar 

  12. Park TJ, Lee SJ, Park JP, Yang MH, Choi JH, Lee SY (2011) Characterization of a bacterial self-assembly surface layer protein and its application as an electrical nanobiosensor. J Nanosci Nanotechnol 11:402–407

    Article  CAS  Google Scholar 

  13. Numata M, Asai M, Kaneko K, Bae A-H, Hasegawa T, Sakurai K, Shinkai S (2005) Inclusion of cut and as-grown single-walled carbon nanotubes in the helical superstructure of schizophyllan and curdlan (beta-1,3-glucans). J Am Chem Soc 127:5875–5884

    Article  CAS  Google Scholar 

  14. Liu Y, Yu Z-L, Zhang Y-M, Guo D-S, Liu Y-P (2008) Supramolecular architectures of beta-cyclodextrin-modified chitosan and pyrene derivatives mediated by carbon nanotubes and their DNA condensation. J Am Chem Soc 130:10431–10439

    Article  CAS  Google Scholar 

  15. Ortiz-Acevedo A, Xie H, Zorbas V, Sampson WM, Dalton AB, Baughman RH, Draper RK, Musselman IH, Dieckmann GR (2005) Diameter-selective solubilization of single-walled carbon nanotubes by reversible cyclic peptides. J Am Chem Soc 127:9512–9517

    Article  CAS  Google Scholar 

  16. Su Z, Mui K, Daub E, Leung T, Honek J (2007) Single-walled carbon nanotube binding peptides: Probing tryptophan’s importance by unnatural amino acid substitution. J Phy Chem B 111:14411–14417

    Article  CAS  Google Scholar 

  17. Park TJ, Park JP, Lee SJ, Jung D-H, Ko YK, Jung H-T, Lee SY (2011) Alignment of SWNTs by protein-ligand interaction of functionalized magnetic particles under low magnetic fields. J Nanosci Nanotechnol 11:4540–4545

    Article  CAS  Google Scholar 

  18. Yang L, Zhang B, Liang Y, Yang B, Kong T, Zhang L-M (2008) In situ synthesis of amylose/single-walled carbon nanotubes supramolecular assembly. Carbohydr Res 343:2463–2467

    Article  CAS  Google Scholar 

  19. Liu Y, Liang P, Zhang H-Y, Guo D-S (2006) Cation-controlled aqueous dispersions of alginic-acid-wrapped multi-walled carbon nanotubes. Small 2:874–878

    Article  CAS  Google Scholar 

  20. Chambers G, Carroll C, Farrell GF, Dalton AB, McNamara M, In het Panhuis M, Byrne HJ, (2003) Characterization of the interaction of gamma cyclodextrin with single-walled carbon nanotubes. Nano Lett 3:843–846

    Article  CAS  Google Scholar 

  21. Star A, Steuerman DW, Heath JR, Stoddart JF (2002) Starched carbon nanotubes. Angew Chem Int Ed 41:2508–2512

    Article  CAS  Google Scholar 

  22. Jang K, Eom K, Lee G, Han J-H, Haam S, Yang J, Kim E, Kim W-J, Kwon T (2012) Water-stable single-walled carbon nanotubes coated by pyrenyl polyethylene glycol for fluorescence imaging and photothermal therapy. Biochip J 6:396–403

    Article  CAS  Google Scholar 

  23. Kamaruddin K, Illias RM, Aziz SA, Said M, Hassan O (2005) Effects of buffer properties on cyclodextrin glucanotransferase reactions and cyclodextrin production from raw sago (Cycas revoluta) starch. Biotechnol Appl Biochem 41:117–125

    Article  CAS  Google Scholar 

  24. Yamamoto K, Zhang ZZ, Kobayashi S (2000) Cycloamylose (cyclodextrin) glucanotransferase degrades intact granules of potato raw starch. J Agric Food Chem 48:962–966

    Article  CAS  Google Scholar 

  25. Dodziuk H, Ejchart A, Anczewsk W, Ueda H, Krinichnaya E, Dolgonos G, Kutner W (2003) Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios. Chem Commun 8:986–987

    Article  Google Scholar 

  26. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  Google Scholar 

  27. Zu SZ, Sun XX, Liu Y, Han BH (2009) Supramolecular surface modification and solubilization of single-walled carbon nanotubes with cyclodextrin complexation. Chem Asian J 4:1562–1572

    Article  CAS  Google Scholar 

  28. Shao DD, Sheng GD, Chen CL, Wang XK, Nagatsu N (2010) Removal of polychlorinated biphenyls from aqueous solutions using β-cyclodextrin grafted multiwalled carbon nanotubes. Chemosphere 79:679–685

    Article  CAS  Google Scholar 

  29. Kim UJ, Furtado CA, Liu X, Chen G, Eklund PC (2005) Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. J Am Chem Soc 127:15437–15445

    Article  CAS  Google Scholar 

  30. Chen J, Dyer MJ, Yu M-F (2001) Cyclodextrin-mediated soft cutting of single-walled carbon nanotubes. J Am Chem Soc 123:6201–6206

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was conducted with the support of the Korea Food Research Institute (Project No. E0152200; T. J. Park). K. Kwak thanks for the support from Basic Science Research Program through the NRF funded by the MSIP of Korea (2009-0093817). The work of S. Y. Lee was also supported by the Technology Development Program to Solve Climate Changes on Systems Metabolic Engineering for Biorefineries from the Ministry of Science, ICT and Future Planning (MSIP) through the National Research Foundation (NRF) of Korea (NRF-2012-C1AAA001-2012M1A2A2026556).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyungwon Kwak or Tae Jung Park.

Additional information

M. S. Hyun and J. P. Park contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyun, M.S., Park, J.P., Seo, D. et al. Enzymatic formation of carbohydrate rings catalyzed by single-walled carbon nanotubes. Bioprocess Biosyst Eng 39, 725–733 (2016). https://doi.org/10.1007/s00449-016-1553-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1553-5

Keywords