Skip to main content
Log in

The influence of polymeric membrane gas spargers on hydrodynamics and mass transfer in bubble column bioreactors

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Gas sparging performances of a flat sheet and tubular polymeric membranes were investigated in 3.1 m bubble column bioreactor operated in a semi batch mode. Air–water and air–CMC (Carboxymethyl cellulose) solutions of 0.5, 0.75 and 1.0 % w/w were used as interacting gas–liquid mediums. CMC solutions were employed in the study to simulate rheological properties of bioreactor broth. Gas holdup, bubble size distribution, interfacial area and gas–liquid mass transfer were studied in the homogeneous bubbly flow hydrodynamic regime with superficial gas velocity (U G) range of 0.0004–0.0025 m/s. The study indicated that the tubular membrane sparger produced the highest gas holdup and densely populated fine bubbles with narrow size distribution. An increase in liquid viscosity promoted a shift in bubble size distribution to large stable bubbles and smaller specific interfacial area. The tubular membrane sparger achieved greater interfacial area and an enhanced overall mass transfer coefficient (K La) by a factor of 1.2–1.9 compared to the flat sheet membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Luo G, Angelidaki I (2012) Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture. Biotechnol Bioeng 109:2729–2736. doi:10.1002/bit.24557

    Article  CAS  Google Scholar 

  2. Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27:153–176. doi:10.1016/j.biotechadv.2008.10.006

    Article  CAS  Google Scholar 

  3. Zilli Converti A, Mario Arni, Saleh Di Felice, Renzo Del Borghi, Marco (1999) Estimation of viscosity of highly viscous fermentation media containing one or more solutes. Biochem Eng J Biochem Eng J 4:81–85

    Google Scholar 

  4. Moo-Young M, Halard B, Allen DG et al (1987) Oxygen transfer to mycelial fermentation broths in an airlift fermentor. Biotechnol Bioeng 30:746–753. doi:10.1002/bit.260300607

    Article  CAS  Google Scholar 

  5. Kantarci N, Borak F, Ulgen KO (2005) Bubble column reactors. Process Biochem 40:2263–2283. doi:10.1016/j.procbio.2004.10.004

    Article  CAS  Google Scholar 

  6. Mouza AA, Dalakoglou GK, Paras SV (2005) Effect of liquid properties on the performance of bubble column reactors with fine pore spargers. Chem Eng Sci 60:1465–1475. doi:10.1016/j.ces.2004.10.013

    Article  CAS  Google Scholar 

  7. Poulsen BR, Iversen JJL (1999) Membrane sparger in bubble column, airlift, and combined membrane–ring sparger bioreactors. Biotechnol Bioeng 64:452–458. doi:10.1002/(SICI)1097-0290(19990820)64:4<452:AID-BIT8>3.0.CO;2-#

    Article  CAS  Google Scholar 

  8. Deckwer W-D, Nguyen-Tien K, Schumpe A, Serpemen Y (1982) Oxygen mass transfer into aerated CMC solutions in a bubble column. Biotechnol Bioeng 24:461–481. doi:10.1002/bit.260240215

    Article  CAS  Google Scholar 

  9. Bouaifi M, Hebrard G, Bastoul D, Roustan M (2001) A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in stirred gas–liquid reactors and bubble columns. Chem Eng Process Process Intensif 40:97–111

    Article  CAS  Google Scholar 

  10. Poulsen BR, Iversen JJL (1998) Characterization of gas transfer and mixing in a bubble column equipped with a rubber membrane diffuser. Biotechnol Bioeng 58:633–641. doi:10.1002/(SICI)1097-0290(19980620)58:6<633:AID-BIT9>3.0.CO;2-J

    Article  CAS  Google Scholar 

  11. Sarbatly RH, Suali E (2013) Membrane photobioreactor as a device to increase CO2 mitigation by microalgae. In: Pogaku R, Sarbatly RH (eds) Advanced biofuels. Springer, Boston, pp 241–258

    Chapter  Google Scholar 

  12. Wei C, Wu B, Li G et al (2014) Comparison of the hydrodynamics and mass transfer characteristics in internal-loop airlift bioreactors utilizing either a novel membrane-tube sparger or perforated plate sparger. Bioprocess Biosyst Eng 37:2289–2304. doi:10.1007/s00449-014-1207-4

    Article  CAS  Google Scholar 

  13. Eshtiaghi N, Yap SD, Markis F et al (2012) Clear model fluids to emulate the rheological properties of thickened digested sludge. Water Res 46:3014–3022. doi:10.1016/j.watres.2012.03.003

    Article  CAS  Google Scholar 

  14. Bajón Fernández Y, Cartmell E, Soares A et al (2015) Gas to liquid mass transfer in rheologically complex fluids. Chem Eng J 273:656–667. doi:10.1016/j.cej.2015.03.051

    Article  Google Scholar 

  15. Li S, Ma Y, Fu T et al (2012) The viscosity distribution around a rising bubble in shear-thinning non-newtonian fluids. Braz J Chem Eng 29:265–274. doi:10.1590/S0104-66322012000200007

    Article  CAS  Google Scholar 

  16. Wang Bai F, Liping Huang, Hanjing Xu, Jianfeng Caesar, Jim Ridgway, Darin Gu, Tingyue Moo-Young, Murray (2001) Oxygen mass-transfer performance of low viscosity gas-liquid-solid system in a split-cylinder airlift bioreactor. Biotechnol Lett 23:1109–1113

    Article  Google Scholar 

  17. Akita K, Yoshida F (1973) Gas holdup and volumetric mass transfer coefficient in bubble columns. effects of liquid properties. Ind Eng Chem Process Des Dev 12:76–80. doi:10.1021/i260045a015

    Article  CAS  Google Scholar 

  18. Agrawal S (2013) Bubble dynamics and interface phenomenon. J Eng Technol Res 5:42–50. doi:10.5897/JETR2013.0297

    Article  Google Scholar 

  19. Lau YM, Deen NG, Kuipers JAM (2013) Development of an image measurement technique for size distribution in dense bubbly flows. Chem Eng Sci 94:20–29. doi:10.1016/j.ces.2013.02.043

    Article  CAS  Google Scholar 

  20. Schäfer R, Merten C, Eigenberger G (2002) Bubble size distributions in a bubble column reactor under industrial conditions. Exp Therm Fluid Sci 26:595–604. doi:10.1016/S0894-1777(02)00189-9

    Article  Google Scholar 

  21. Kulkarni AA, Joshi JB (2005) Bubble Formation and Bubble Rise Velocity in Gas − Liquid Systems: a Review. Ind Eng Chem Res 44:5873–5931. doi:10.1021/ie049131p

    Article  CAS  Google Scholar 

  22. Haapala A, Honkanen M, Liimatainen H et al (2010) Hydrodynamic drag and rise velocity of microbubbles in papermaking process waters. Chem Eng J 162:956–964. doi:10.1016/j.cej.2010.07.001

    Article  CAS  Google Scholar 

  23. Nedeltchev S, Jordan U, Schumpe A (2010) Semi-theoretical prediction of volumetric mass transfer coefficients in bubble columns with organic liquids at ambient and elevated temperatures. Can J Chem Eng 88:523–532. doi:10.1002/cjce.20309

    Article  CAS  Google Scholar 

  24. Godbole SP, Schumpe A, Shah YT, Carr NL (1984) Hydrodynamics and mass transfer in non-Newtonian solutions in a bubble column. AIChE J 30:213–220

    Article  CAS  Google Scholar 

  25. Chisti MY, Moo-Young M (1988) Gas holdup in pneumatic reactors. Chem Eng J 38:149–152. doi:10.1016/0300-9467(88)80073-X

    Article  CAS  Google Scholar 

  26. Kawahara A, Sadatomi M, Matsuyama F et al (2009) Prediction of micro-bubble dissolution characteristics in water and seawater. Exp Therm Fluid Sci 33:883–894. doi:10.1016/j.expthermflusci.2009.03.004

    Article  CAS  Google Scholar 

  27. Lewis WK, Whitman WG (1924) Principles of Gas Absorption. Ind Eng Chem 16:1215–1220. doi:10.1021/ie50180a002

    Article  CAS  Google Scholar 

  28. Soltanali S, Hagani ZS (2008) Modeling of air stripping from volatile organic compounds in biological treatment processes. Int J Environ Sci Technol 5:353–360. doi:10.1007/BF03326030

    Article  CAS  Google Scholar 

  29. Kirk TV, Szita N (2013) Oxygen transfer characteristics of miniaturized bioreactor systems. Biotechnol Bioeng 110:1005–1019. doi:10.1002/bit.24824

    Article  CAS  Google Scholar 

  30. Peterat G, Schmolke H, Lorenz T et al (2014) Characterization of oxygen transfer in vertical microbubble columns for aerobic biotechnological processes: oxygen transfer in vertical microbubble columns. Biotechnol Bioeng. doi:10.1002/bit.25243

  31. Smith JS, Burns LF, Valsaraj KT, Thibodeaux LJ (1996) Bubble column reactors for wastewater treatment. 2. The effect of sparger design on sublation column hydrodynamics in the homogeneous flow regime. Ind Eng Chem Res 35:1700–1710

    Article  CAS  Google Scholar 

  32. Ramezani M, Mostoufi N, Mehrnia MR (2012) Improved modeling of bubble column reactors by considering the bubble size distribution. Ind Eng Chem Res 51:5705–5714. doi:10.1021/ie202914s

    Article  CAS  Google Scholar 

  33. Deng Z, Wang T, Zhang N, Wang Z (2010) Gas holdup, bubble behavior and mass transfer in a 5 m high internal-loop airlift reactor with non-Newtonian fluid. Chem Eng J 160:729–737. doi:10.1016/j.cej.2010.03.078

    Article  CAS  Google Scholar 

  34. Chaudhari RV, Hofmann H (1994) Coalescence of gas bubbles in liquids. Rev Chem Eng. doi:10.1515/REVCE.1994.10.2.131

    Google Scholar 

  35. M. Yoshimoto SS (2007) Gas-liquid interfacial area, bubble size and liquid-phase mass transfer coefficient in a three-phase external loop airlift bubble column. Chem Amp Biochem Eng Q Cabeqpbfhr 21:4

  36. Ryu HW, Chang YK, Kim SD (1993) Gas holdup and mass transfer characteristics of carboxymethyl cellulose solutions in a bubble column with a radial gas sparger. Bioprocess Eng 8:271–277. doi:10.1007/BF00369840

    Article  CAS  Google Scholar 

  37. Merchuk JC, Yona S, Siegel MH, Zvi AB (1990) On the first-order approximation to the response of dissolved oxygen electrodes for dynamic KLa estimation. Biotechnol Bioeng 35:1161–1163. doi:10.1002/bit.260351113

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Danish Council for Strategic Research under the project “SYMBIO-Integration of biomass and wind power for biogas enhancement and upgrading via Hydrogen assisted anaerobic digestion”. The authors are responsible for the content of this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gossaye Tirunehe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tirunehe, G., Norddahl, B. The influence of polymeric membrane gas spargers on hydrodynamics and mass transfer in bubble column bioreactors. Bioprocess Biosyst Eng 39, 613–626 (2016). https://doi.org/10.1007/s00449-016-1543-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1543-7

Keywords

Navigation