Skip to main content

Advertisement

Log in

Combined bioelectrochemical–electrical model of a microbial fuel cell

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Several recent studies demonstrated significant charge storage in electrochemical biofilms. Aiming to evaluate the impact of charge storage on microbial fuel cell (MFC) performance, this work presents a combined bioelectrochemical–electrical (CBE) model of an MFC. In addition to charge storage, the CBE model is able to describe fast (ms) and slow (days) nonlinear dynamics of MFCs by merging mass and electron balances with equations describing an equivalent electrical circuit. Parameter estimation was performed using results of MFC operation with intermittent (pulse-width modulated) connection of the external resistance. The model was used to compare different methods of selecting external resistance during MFC operation under varying operating conditions. Owing to the relatively simple structure and fast numerical solution of the model, its application for both reactor design and real-time model-based process control applications are envisioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Logan BE (2008) Microbial fuel cells. Wiley, New Jersey

    Google Scholar 

  2. Logan BE, Regan JM (2006) Microbial fuel cells: challenges and applications. Environ Sci Technol 40(17):5172–5180

    Article  CAS  Google Scholar 

  3. Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25(5):464–482

    Article  CAS  Google Scholar 

  4. Franks AE, Nevin K (2010) Microbial fuel cells, a current review. Energies 3:899–919

    Article  CAS  Google Scholar 

  5. Oh ST, Kim JR, Premier GC, Lee TH, Kim C, Sloan WT (2010) Sustainable wastewater treatment: how might microbial fuel cells contribute. Biotechnol Adv 28(6):871–881

    Article  CAS  Google Scholar 

  6. Oliveira VB, Simoes M, Melo LF, Pinto AMFR (2013) Overview on the developments of microbial fuel cells. Biochem Eng 73:53–64

    Article  CAS  Google Scholar 

  7. Picioreanu C, Katuri KP, van Loosdrecht MCM, Head IM, Scott K (2010) Modelling microbial fuel cells with suspended cells and added electron transfer mediator. Appl Electrochem 40(1):151–162

    Article  CAS  Google Scholar 

  8. Zeng Y, Choo YF, Kim BH, Wu P (2010) Modelling and simulation of two chamber microbial fuel cell. Power Sources 195(1):79–89

    Article  CAS  Google Scholar 

  9. Zhang X-C, Halme A (1995) Modelling of a microbial fuel cell process. Biotechnol Lett 17(8):809–814

    Article  CAS  Google Scholar 

  10. Picioreanu C, Katuri KP, Head IM, Loosdrecht MCMv, Scott K (2008) Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion. Wat Sci Technol 57(7):965–972

    Article  CAS  Google Scholar 

  11. Pinto RP, Srinivasan B, Manuel MF, Tartakovsky B (2010) A two population bio-electrochemical model of a microbial fuel cell. Bioresour Technol 101(14):5256–5265

    Article  CAS  Google Scholar 

  12. Picioreanu C, van Loosdrecht MCM, Curtis TP, Scott K (2010) Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance. Bioelectrochemistry 78(1):8–24

    Article  CAS  Google Scholar 

  13. Marcus AK, Torres CI, Rittmann BE (2007) Conduction-based modeling of the biofilm anode of a microbial fuel cell. Biotechnol Bioeng 98(6):1171–1182

    Article  CAS  Google Scholar 

  14. Picioreanu C, Head IM, Katuri KP, van Loosdrecht MCM, Scott K (2007) A computational model for biofilm-based microbial fuel cells. Water Res 41(13):2921–2940

    Article  CAS  Google Scholar 

  15. Schrott GD, Bonanni PS, Robuschi L, Esteve-Nuñez A, Busalmen JP (2011) Electrochemical insight into the mechanism of electron transport in biofilms of Geobacter sulfurreducens. Electrochim Acta 56(28):10791–10795

    Article  CAS  Google Scholar 

  16. Coronado J, Perrier M, Tartakovsky B (2013) Pulse-width modulated external resistance increases the microbial fuel cell power output. Bioresour Technol 147:65–70

    Article  CAS  Google Scholar 

  17. Coronado J, Perrier M, Tartakovsky B (2013) Online monitoring and parameter estimation of a microbial fuel cell operated with intermittent connection of the external resistor. In: 12th IFAC symposium on computer applications in biotechnology, Mumbai, India, December 16–18, pp 233–237

  18. Grondin F, Perrier M, Tartakovsky B (2012) Microbial fuel cell operation with intermittent connection of the electrical load. Power Sources 208:18–23

    Article  CAS  Google Scholar 

  19. Tartakovsky B, Manuel MF, Neburchilov V, Wang H, Guiot SR (2008) Biocatalyzed hydrogen production in a continuous flow microbial fuel cell with a gas phase cathode. Power Sources 182:291–297

    Article  CAS  Google Scholar 

  20. Pinto RP, Srinivasan B, Guiot SR, Tartakovsky B (2011) the effect of real-time external resistance optimization on microbial fuel cell performance. Water Res 45:1571–1578

    Article  CAS  Google Scholar 

  21. Kravaris C, Hahn J, Chu Y (2013) Advances and selected recent developments in state and parameter estimation. Comput Chem Eng 51:111–123

    Article  CAS  Google Scholar 

  22. Tartakovsky B, Mu SJ, Zeng Y, Lou SJ, Guiot SR, Wu P (2008) Anaerobic digestion model No. 1-based distributed parameter model of an anaerobic reactor: II. Model validation. Bioresour Technol 99(9):3676–3684

    Article  CAS  Google Scholar 

  23. Kaur A, Boghani HC, Michie I, Dinsdale RM, Guwy AJ, Premier GC (2014) Inhibition of methane production in microbial fuel cells: operating strategies which select electrogens over methanogens. Bioresour Technol 173:75–81

    Article  CAS  Google Scholar 

  24. Martin E, Savadogo O, Guiot S, Tartakovsky B (2013) Electrochemical characterization of anodic biofilm development in a microbial fuel cell. Appl Electrochem 43(5):533–540

    Article  CAS  Google Scholar 

  25. Fradler KR, Kim JR, Boghani HC, Dinsdale RM, Guwy AJ, Premier GC (2014) The effect of internal capacitance on power quality and energy efficiency in a tubular microbial fuel cell. Proc Biochem 49:973–980

    Article  CAS  Google Scholar 

  26. Walter XA, Greenman J, Ieropoulos I (2014) Intermittent load implementation in microbial fuel cells improves power performance. Bioresour Technol 172:365–372

    Article  CAS  Google Scholar 

  27. Pinto RP, Srinivasan B, Guiot SR, Tartakovsky B (2011) The effect of real-time external resistance optimization on microbial fuel cell performance. Water Res 45(4):1571–1578

    Article  CAS  Google Scholar 

  28. Oh SE, Logan BE (2007) Voltage reversal during microbial fuel cell stack operation. J Power Sources 167(1):11–17

    Article  CAS  Google Scholar 

  29. Woodward L, Perrier M, Srinivasan B, Pinto RP, Tartakovsky B (2010) Comparison of real-time methods for maximizing power output in microbial fuel cells. AIChE J 56(10):2742–2750

    Article  CAS  Google Scholar 

Download references

Acknowledgments

National Research Council of Canada publication number NRC-EME055740.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Tartakovsky.

Appendix: On-line parameter estimation procedure

Appendix: On-line parameter estimation procedure

The voltage dynamics at the capacitor (V c) of the equivalent circuit shown in Fig. 1 can be described by the following first order differential equation:

$$\frac{{{\text{d}}V_{c} }}{{{\text{d}}t}} = \frac{{E_{\text{oc}} }}{{C\left( {R_{1} + R_{\text{ext}} } \right)}} - \frac{{R_{1} + R_{2} + R_{\text{ext}} }}{{R_{2} C\left( {R_{1} + R_{\text{ext}} } \right)}}V_{c} .$$
(28)

By applying Kirchhoff’s law and solving Eq. (28), the analytical solution of MFC output voltage (V cell) is obtained in the following form:

$$V_{\text{cell}} = E_{\text{oc}} - \left[ {U_{\text{c,final}} + \left( {U_{\text{c,initial}} - U_{\text{c,final}} } \right)e^{{{{ - t} \mathord{\left/ {\vphantom {{ - t} \tau }} \right. \kern-0pt} \tau }}} } \right]\frac{{R_{\text{ext}} }}{{R_{\text{int1}} + R_{\text{ext}} }} ,$$
(29)

where U c,initial and U c,final are the initial and final voltage values shown in Fig. 8.

Fig. 8
figure 8

U MFC profiles at low and high operating frequencies used for on-line parameter estimation. Operating modes used to estimate R 1, E OC, R 2 and C, are shown as steps 1, 2 and 3, respectively

First, R 1 estimation is obtained during MFC operation at a high frequency (e.g. 100 Hz) from the following equation:

$$R_{1} = R_{\text{ext}} \frac{{U_{\text{high}} - U_{\text{low}} }}{{U{}_{\text{low}}}}$$
(30)

where U high and U low are the high and low output voltage levels measured in the experiment (Fig. 8).

Subsequently, E oc estimation is obtained by operating the MFC at a low frequency (e.g. 1.0 Hz) and low duty cycle. It is assumed that U oc is equal to the voltage at the end of the open circuit part of the cycle:

$$U_{\text{oc}} = { \hbox{max} }\left( {U_{\text{MFC}} } \right)$$
(31)

Finally, R 2 and C estimations are obtained using voltage measurements at a low operating frequency. It is assumed that V cell reaches a steady-state value at the end of the closed circuit part of each cycle. In Fig. 8 this value is denoted as U final.

The value of R 2 is estimated as:

$$R_{2} = U_{\text{final}} \frac{{R_{1} + R_{\text{ext}} }}{{U{}_{\text{oc}} - U_{\text{final}} }}$$
(32)

The value of C is calculated as

$$C = \frac{\tau }{{R_{2} }}\frac{{R_{1} + R_{2} + R_{\text{ext}} }}{{R{}_{1} + R_{\text{ext}} }}$$
(33)

where \(\tau\) is the time constant shown in Fig. 8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Recio-Garrido, D., Perrier, M. & Tartakovsky, B. Combined bioelectrochemical–electrical model of a microbial fuel cell. Bioprocess Biosyst Eng 39, 267–276 (2016). https://doi.org/10.1007/s00449-015-1510-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1510-8

Keywords

Navigation