Bioprocess and Biosystems Engineering

, Volume 39, Issue 2, pp 223–231 | Cite as

High throughput de novo RNA sequencing elucidates novel responses in Penicillium chrysogenum under microgravity

  • Yesupatham Sathishkumar
  • Chandran Krishnaraj
  • Kalyanaraman Rajagopal
  • Dwaipayan Sen
  • Yang Soo Lee
Original Paper

Abstract

In this study, the transcriptional alterations in Penicillium chrysogenum under simulated microgravity conditions were analyzed for the first time using an RNA-Seq method. The increasing plethora of eukaryotic microbial flora inside the spaceship demands the basic understanding of fungal biology in the absence of gravity vector. Penicillium species are second most dominant fungal contaminant in International Space Station. Penicillium chrysogenum an industrially important organism also has the potential to emerge as an opportunistic pathogen for the astronauts during the long-term space missions. But till date, the cellular mechanisms underlying the survival and adaptation of Penicillium chrysogenum to microgravity conditions are not clearly elucidated. A reference genome for Penicillium chrysogenum is not yet available in the NCBI database. Hence, we performed comparative de novo transcriptome analysis of Penicillium chrysogenum grown under microgravity versus normal gravity. In addition, the changes due to microgravity are documented at the molecular level. Increased response to the environmental stimulus, changes in the cell wall component ABC transporter/MFS transporters are noteworthy. Interestingly, sustained increase in the expression of Acyl-coenzyme A: isopenicillin N acyltransferase (Acyltransferase) under microgravity revealed the significance of gravity in the penicillin production which could be exploited industrially.

Keywords

Penicillium chrysogenum RNA-Seq Microgravity ABC transporter Acyl-coenzyme A: isopenicillin N acyltransferase 

Supplementary material

449_2015_1506_MOESM1_ESM.doc (252 kb)
Supplementary material 1 (DOC 252 kb)

References

  1. 1.
    Nickerson CA, Ott CM, Mister SJ, Morrow BJ, Burns-Keliher L, Pierson DL (2000) Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence. Infect Immun 68:3147–3152CrossRefGoogle Scholar
  2. 2.
    Rosado H, Doyle M, Hinds J, Taylor PW (2010) Low-shear modelled microgravity alters expression of virulence determinants of Staphylococcus aureus. Acta Astronaut 66:408–413CrossRefGoogle Scholar
  3. 3.
    Sathishkumar Y, Velmurugan N, Lee HM, Rajagopal K, Im CK, Lee YS (2014) Effect of low shear modeled microgravity on phenotypic and central chitin metabolism in the filamentous fungi Aspergillus niger and Penicillium chrysogenum. Antonie van Leeuwenhoek, 1–13Google Scholar
  4. 4.
    Scalzi G, Selbmann L, Zucconi L, Rabbow E, Horneck G, Albertano P, Onofri S (2012) LIFE Experiment: isolation of cryptoendolithic organisms from Antarctic colonized sandstone exposed to space and simulated Mars conditions on the international space station. Orig Life Evol Biosph 42:253–262CrossRefGoogle Scholar
  5. 5.
    Stöffler D, Horneck G, Ott S, Hornemann U, Cockell CS, Moeller R, Meyer C, de Vera J-P, Fritz J, Artemieva NA (2007) Experimental evidence for the potential impact ejection of viable microorganisms from Mars and Mars-like planets. Icarus 186:585–588CrossRefGoogle Scholar
  6. 6.
    Onofri S, de la Torre R, de Vera J-P, Ott S, Zucconi L, Selbmann L, Scalzi G, Venkateswaran KJ, Rabbow E, Sánchez Iñigo FJ (2012) Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology 12:508–516CrossRefGoogle Scholar
  7. 7.
    Onofri S, Barreca D, Selbmann L, Isola D, Rabbow E, Horneck G, De Vera J, Hatton J, Zucconi L (2008) Resistance of Antarctic black fungi and cryptoendolithic communities to simulated space and Martian conditions. Stud Mycol 61:99–109CrossRefGoogle Scholar
  8. 8.
    Novikova N (2004) Review of the knowledge of microbial contamination of the Russian manned spacecraft. Microb Ecol 47:127–132CrossRefGoogle Scholar
  9. 9.
    Tesei D, Marzban G, Zakharova K, Isola D, Selbmann L, Sterflinger K (2012) Alteration of protein patterns in black rock inhabiting fungi as a response to different temperatures. Fungal Biol 116:932–940CrossRefGoogle Scholar
  10. 10.
    Morabito C, Steimberg N, Mazzoleni G, Guarnieri S, Fanò-Illic G, Mariggiò MA (2015) RCCS bioreactor-based modelled microgravity induces significant changes on in vitro 3D neuroglial cell cultures. BioMed Res Int 2015Google Scholar
  11. 11.
    Vunjak-novakovic G, Searby N, de Luis J, Freed LE (2002) Microgravity studies of cells and tissues. Ann N Y Acad Sci 974:504–517CrossRefGoogle Scholar
  12. 12.
    Fengler S, Spirer I, Neef M, Ecke M, Nieselt K, Hampp R (2015) A whole-genome microarray study of Arabidopsis thaliana semisolid callus cultures exposed to microgravity and nonmicrogravity related spaceflight conditions for 5 days on board of Shenzhou 8. BioMed Res Int 2015Google Scholar
  13. 13.
    Chao T-C, Das DB (2015) Numerical simulation of coupled cell motion and nutrient transport in NASA’s rotating bioreactor. Chem Eng J 259:961–971CrossRefGoogle Scholar
  14. 14.
    Rösner H, Wassermann T, Möller W, Hanke W (2006) Effects of altered gravity on the actin and microtubule cytoskeleton of human SH-SY5Y neuroblastoma cells. Protoplasma 229:225–234CrossRefGoogle Scholar
  15. 15.
    Hoffman M, Bash E, Berger SA, Burke M, Yust I (1992) Fatal necrotizing esophagitis due to Penicillium chrysogenum in a patient with acquired immunodeficiency syndrome. Eur J Clin Microbiol Infect Dis 11:1158–1160CrossRefGoogle Scholar
  16. 16.
    Eschete ML, King JW, West BC, Oberle A (1981) Penicillium chrysogenum endophthalmitis. Mycopathologia 74:125–127CrossRefGoogle Scholar
  17. 17.
    D’Antonio D, Violante B, Farina C, Sacco R, Angelucci D, Masciulli M, Iacone A, Romano F (1997) Necrotizing pneumonia caused by Penicillium chrysogenum. J Clin Microbiol 35:3335–3337Google Scholar
  18. 18.
    López M, Neumann González M (1999) Case report: cutaneous penicilliosis due to Penicillium chrysogenum. Mycoses 42:347–349CrossRefGoogle Scholar
  19. 19.
    Inoue Y, Matsuwaki Y, Shin S-H, Ponikau JU, Kita H (2005) Nonpathogenic, environmental fungi induce activation and degranulation of human eosinophils. J Immunol 175:5439–5447CrossRefGoogle Scholar
  20. 20.
    Shen HD, Chou H, Tam M, Chang CY, Lai HY, Wang SR (2003) Molecular and immunological characterization of Pen ch 18, the vacuolar serine protease major allergen of Penicillium chrysogenum. Allergy 58:993–1002CrossRefGoogle Scholar
  21. 21.
    Shen HD, Liaw SF, Lin WL, Ro LH, Yang HL, Han SH (1995) Molecular cloning of cDNA coding for the 68 kDa allergen of Penicillium notatum using MoAbs. Clin Exp Allergy 25:350–356CrossRefGoogle Scholar
  22. 22.
    Kumar YS, Unnithan AR, Sen D, Kim CS, Lee YS (2015) Microgravity biosynthesized penicillin loaded electrospun polyurethane–dextran nanofibrous mats for biomedical applications. Colloids Surf A Physicochem Eng Asp 477:77–83CrossRefGoogle Scholar
  23. 23.
    Zakharova K, Marzban G, de Vera JP, Lorek A, Sterflinger K (2014) Protein patterns of black fungi under simulated Mars-like conditions. Sci Rep 4Google Scholar
  24. 24.
    Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255–264CrossRefGoogle Scholar
  25. 25.
    Guo S, Zheng Y, Joung J-G, Liu S, Zhang Z, Crasta OR, Sobral BW, Xu Y, Huang S, Fei Z (2010) Transcriptome sequencing and comparative analysis of cucumber flowers with different sex types. BMC Genom 11:384CrossRefGoogle Scholar
  26. 26.
    Feldmeyer B, Wheat CW, Krezdorn N, Rotter B, Pfenninger M (2011) Short read Illumina data for the de novo assembly of a non-model snail species transcriptome (Radix balthica, Basommatophora, Pulmonata), and a comparison of assembler performance. BMC Genom 12:317CrossRefGoogle Scholar
  27. 27.
  28. 28.
    Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652CrossRefGoogle Scholar
  29. 29.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  30. 30.
    Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucl Acids Res 35:W182–W185CrossRefGoogle Scholar
  31. 31.
    Li W, Jaroszewski L, Godzik A (2001) Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics 17:282–283CrossRefGoogle Scholar
  32. 32.
    Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359CrossRefGoogle Scholar
  33. 33.
    Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106CrossRefGoogle Scholar
  34. 34.
    Del Fabbro C, Scalabrin S, Morgante M, Giorgi FM (2013) An extensive evaluation of read trimming effects on Illumina NGS data analysisGoogle Scholar
  35. 35.
    Biesecker LG, Burke W, Kohane I, Plon SE, Zimmern R (2012) Next-generation sequencing in the clinic: are we ready? Nat Rev Genet 13:818–824CrossRefGoogle Scholar
  36. 36.
    Schuster SC (2007) Next-generation sequencing transforms today’s biology. Nature 200:16–18Google Scholar
  37. 37.
    Iyer MK, Chinnaiyan AM, Maher CA (2011) ChimeraScan: a tool for identifying chimeric transcription in sequencing data. Bioinformatics 27:2903–2904CrossRefGoogle Scholar
  38. 38.
    Bansal V, Bafna V (2008) HapCUT: an efficient and accurate algorithm for the haplotype assembly problem. Bioinformatics 24:i153–i159CrossRefGoogle Scholar
  39. 39.
    Krueger F, Kreck B, Franke A, Andrews SR (2012) DNA methylome analysis using short bisulfite sequencing data. Nat Methods 9:145–151CrossRefGoogle Scholar
  40. 40.
    Wang X, Ghosh S, Guo S-W (2001) Quantitative quality control in microarray image processing and data acquisition. Nucl Acids Res 29:e75CrossRefGoogle Scholar
  41. 41.
    Miyazaki Y, Sunagawa M, Higashibata A, Ishioka N, Babasaki K, Yamazaki T (2010) Differentially expressed genes under simulated microgravity in fruiting bodies of the fungus Pleurotus ostreatus. FEMS Microbiol Lett 307:72–79CrossRefGoogle Scholar
  42. 42.
    Purevdorj-Gage B, Sheehan K, Hyman L (2006) Effects of low-shear modeled microgravity on cell function, gene expression, and phenotype in Saccharomyces cerevisiae. Appl Environ Microbiol 72:4569–4575CrossRefGoogle Scholar
  43. 43.
    Moreno-Vargas L, Correa-Basurto J, Maroun RC, Fernández FJ (2012) Homology modeling of the structure of acyl coA: isopenicillin N-acyltransferase (IAT) from Penicillium chrysogenum. IAT interaction studies with isopenicillin-N, combining molecular dynamics simulations and docking. J Mol Model 18:1189–1205CrossRefGoogle Scholar
  44. 44.
    Wilson JW, Ott CM, Ramamurthy R, Porwollik S, McClelland M, Pierson DL, Nickerson CA (2002) Low-shear modeled microgravity alters the Salmonella enterica serovar Typhimurium stress response in an RpoS-independent manner. Appl Environ Microbiol 68:5408–5416CrossRefGoogle Scholar
  45. 45.
    van den Berg MA, Albang R, Albermann K, Badger JH, Daran J-M, Driessen AJ, Garcia-Estrada C, Fedorova ND, Harris DM, Heijne WH (2008) Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol 26:1161–1168CrossRefGoogle Scholar
  46. 46.
    Pao SS, Paulsen IT, Saier MH (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34Google Scholar
  47. 47.
    Askew C, Sellam A, Epp E, Hogues H, Mullick A, Nantel A, Whiteway M (2009) Transcriptional regulation of carbohydrate metabolism in the human pathogen Candida albicans. PLoS Pathog 5:e1000612CrossRefGoogle Scholar
  48. 48.
    Freitas FZ, de Paula RM, Barbosa LCB, Terenzi HF, Bertolini MC (2010) cAMP signaling pathway controls glycogen metabolism in Neurospora crassa by regulating the glycogen synthase gene expression and phosphorylation. Fungal Genet Biol 47:43–52CrossRefGoogle Scholar
  49. 49.
    Boudreau BA, Larson TM, Brown DW, Busman M, Roberts ES, Kendra DF, McQuade KL (2013) Impact of temperature stress and validamycin A on compatible solutes and fumonisin production in F. verticillioides: role of trehalose-6-phosphate synthase. Fungal Genet Biol 57:1–10CrossRefGoogle Scholar
  50. 50.
    Foster AJ, Jenkinson JM, Talbot NJ (2003) Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. The EMBO Journal 22:225–235CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yesupatham Sathishkumar
    • 1
  • Chandran Krishnaraj
    • 2
  • Kalyanaraman Rajagopal
    • 3
  • Dwaipayan Sen
    • 4
    • 5
  • Yang Soo Lee
    • 1
  1. 1.Department of Forest Science and Technology, College of Agriculture and Life SciencesChonbuk National UniversityJeonjuRepublic of Korea
  2. 2.Department of Food Science and Technology, College of Agriculture and Life SciencesChonbuk National UniversityJeonjuRepublic of Korea
  3. 3.Department of BiotechnologyVels UniversityChennaiIndia
  4. 4.School of Biosciences and TechnologyVIT UniversityVelloreIndia
  5. 5.Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular TheranosticsSchool of Biosciences and Technology, VIT UniversityVelloreIndia

Personalised recommendations