Advertisement

Bioprocess and Biosystems Engineering

, Volume 39, Issue 1, pp 53–58 | Cite as

Bioinspired enzymatic synthesis of silica nanocrystals provided by recombinant silicatein from the marine sponge Latrunculia oparinae

  • Yury N. Shkryl
  • Victor P. Bulgakov
  • Galina N. Veremeichik
  • Svetlana N. Kovalchuk
  • Valery B. Kozhemyako
  • Dmitrii G. Kamenev
  • Irina V. Semiletova
  • Yana O. Timofeeva
  • Yury A. Shchipunov
  • Yury N. Kulchin
Original Paper

Abstract

The process of silica formation in marine sponges is thought to be mediated by a family of catalytically active structure-directing enzymes called silicateins. It has been demonstrated in biomimicking syntheses that silicateins facilitated the formation of amorphous SiO2. Here, we present evidence that the silicatein LoSiLA1 from the marine sponge Latrunculia oparinae catalyzes the in vitro synthesis of hexa-tetrahedral SiO2 crystals of 200–300 nm. This was possible in the presence of the silica precursor tetrakis-(2-hydroxyethyl)-orthosilicate that is completely soluble in water and biocompatible, experiences hydrolysis–condensation at neutral pH and ambient conditions.

Keywords

Silicatein Silica nanocrystals Biosilicification Sponge 

Notes

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (research Project No. OFI_M24 13-04-12403) and by a grant from the Grant Program “Principles of Basic Investigations of Nanotechnologies and Nanomaterials” from the Russian Academy of Sciences.

Supplementary material

449_2015_1488_MOESM1_ESM.doc (220 kb)
Supplementary material 1 (doc 220 kb)

References

  1. 1.
    Priolo F, Gregorkiewicz T, Galli M, Krauss TF (2014) Silicon nanostructures for photonics and photovoltaics. Nat Nanotechnol 9:19–32CrossRefGoogle Scholar
  2. 2.
    Peng F, Su Y, Zhong Y, Fan C, Lee ST, He Y (2014) Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc Chem Res 47:612–623CrossRefGoogle Scholar
  3. 3.
    Tahir MN, Théato P, Müller WEG, Schröder HC, Janshoff A, Zhang J, Huth J, Tremel W (2004) Monitoring the formation of biosilica catalysed by histidine-tagged silicatein. Chem Commun 24:2848–2849CrossRefGoogle Scholar
  4. 4.
    Dickerson MB, Sandhage KH, Naik RR (2008) Protein- and peptide-directed syntheses of inorganic materials. Chem Rev 108:4935–4978CrossRefGoogle Scholar
  5. 5.
    Patwardhan SV, Mukherjee N, Steinitz-Kannan M, Clarson SJ (2003) Bioinspired synthesis of new silica structures. Chem Commun 10:1122–1123CrossRefGoogle Scholar
  6. 6.
    Tomczak MM, Glawe DD, Drummy LF, Lawrence CG, Stone MO, Perry CC, Pochan DJ, Deming TJ, Naik RR (2005) Polypeptide templated synthesis of hexagonal platelets. J Am Chem Soc 127:12577–12582CrossRefGoogle Scholar
  7. 7.
    Bawazer LA, Izumi M, Kolodin D, Neilson JR, Schwenzer B, Morse DE (2012) Evolutionary selection of enzymatically synthesized semiconductors from biomimetic mineralization vesicles. Proc Natl Acad Sci USA 109:E1705–E1714CrossRefGoogle Scholar
  8. 8.
    Kozhemyako VB, Veremeichik GN, Shkryl YN, Kovalchuk SN, Krasokhin VB, Rasskazov VA, Zhuravlev YN, Bulgakov VP, Kulchin YN (2010) Silicatein genes in spicule-forming and nonspicule-forming Pacific demosponges. Mar Biotechnol 12:403–409CrossRefGoogle Scholar
  9. 9.
    Shkryl YN, Veremeichik GN, Bulgakov VP, Zhuravlev YN (2011) Induction of anthraquinone biosynthesis in Rubia cordifolia cells by heterologous expression of a calcium-dependent protein kinase gene. Biotechnol Bioeng 108:1734–1738CrossRefGoogle Scholar
  10. 10.
    Shchipunov YA (2003) Sol-gel derived biomaterials of silica and carrageenans. J Colloid Interface Sci 268:68–76CrossRefGoogle Scholar
  11. 11.
    Shchipunov YA, Karpenko TY, Krekoten AV (2005) Hybrid organic-inorganic nanocomposites fabricated with a novel biocompatible precursor using sol-gel processing. Compos Interfaces 11:587–607CrossRefGoogle Scholar
  12. 12.
    Shchipunov YA, Shipunova NY (2008) Regulation of silica morphology by proteins serving as a template for mineralization. Colloid Surf B 63:7–11CrossRefGoogle Scholar
  13. 13.
    Veremeichik GN, Shkryl YN, Bulgakov VP, Shedko SV, Kozhemyako VB, Kovalchuk SN, Krasokhin VB, Zhuravlev YN, Kulchin YN (2011) Occurrence of a silicatein gene in glass sponges (Hexactinellida: porifera). Mar Biotechnol 13:810–819CrossRefGoogle Scholar
  14. 14.
    Shchipunov Y (2012) Bionanocomposites: green sustainable materials for the near future. Pure Appl Chem 84:2579–2607CrossRefGoogle Scholar
  15. 15.
    Wang HP, Xu CY, Zheng CZ, Xu W, Dong TJ, Liu KL, Han HY, Liang JG (2013) Facile synthesis and characterization of Au nanoclusters-silica fluorescent composite nanospheres. J Nanomater. doi: 10.1155/2013/972834 (Article ID: 972834) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yury N. Shkryl
    • 1
  • Victor P. Bulgakov
    • 1
    • 5
  • Galina N. Veremeichik
    • 1
  • Svetlana N. Kovalchuk
    • 2
  • Valery B. Kozhemyako
    • 2
  • Dmitrii G. Kamenev
    • 1
  • Irina V. Semiletova
    • 3
  • Yana O. Timofeeva
    • 1
  • Yury A. Shchipunov
    • 3
  • Yury N. Kulchin
    • 4
  1. 1.Institute of Biology and Soil ScienceFar East Branch of Russian Academy of SciencesVladivostokRussia
  2. 2.Pacific Institute of Bioorganic ChemistryFar East Branch of Russian Academy of SciencesVladivostokRussia
  3. 3.Institute of ChemistryFar East Branch of Russian Academy of SciencesVladivostokRussia
  4. 4.Institute for Automation and Control ProcessesFar East Branch of Russian Academy of ScienceVladivostokRussia
  5. 5.Far Eastern Federal UniversityVladivostokRussia

Personalised recommendations