Skip to main content
Log in

Optimization of diacylglycerol production by glycerolysis of fish oil catalyzed by Lipozyme TL IM with Tween 65

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The diacylglycerols (DAG) are emulsifiers with high added value used as functional additives in food, medicine, and cosmetic industries. In glycerolysis of oils for the production of DAG, the immiscibility between the substrates (glycerol and oil phases) has to be overcome, for example, by the addition of a food grade surfactant like Tween 65. The main objective of this work was to optimize the process conditions for obtaining diacylglycerols rich in the omega-3 eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, through the enzymatic glycerolysis of fish oil, in systems with Tween 65 and without this surfactant, using Lipozyme TL® IM as biocatalyst. The experiments were performed according to predetermined conditions varying the temperature, enzyme load, the oil to glycerol molar ratio and, when added, the surfactant load. After 6 h of reaction, it was possible to produce up to 20.76 and 13.76 % of diacylglycerols from fish oil in the reactions with and without Tween 65, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pawongrat R, Xu X, H-Kittikun A (2007) Synthesis of monoacylglycerol rich in polyunsaturated fatty acids from tuna oil with immobilized lipase AK. Food Chem 104:251–258

    Article  CAS  Google Scholar 

  2. Feltes MMC, Oliveira JV, Treichel H, Block JM, Oliveira D, Ninow JL (2010) Assessment of process parameters on the production of diglycerides rich in omega-3 fatty acids through the enzymatic glycerolysis of fish oil. Eur Food Res Technol 231:701–710

    Article  CAS  Google Scholar 

  3. Eom T-K, Kong C-S, Byun H-G, Jung W-K, Kim S-K (2010) Lipase catalytic synthesis of diacylglycerol from tuna oil and its anti-obesity effect in C57BL/6 J mice. Process Biochem 45:738–743

    Article  CAS  Google Scholar 

  4. Freitas L, Bueno T, Perez VH, De Castro HF (2008) Monoglycerides: production by enzymatic route and applications. Quím Nova 31:1514–1521

    Article  CAS  Google Scholar 

  5. Weber N, Mukherjee KD (2004) Solvent-free lipase-catalyzed preparation of diacylglycerols. J Agric Food Chem 52:5347–5353

    Article  CAS  Google Scholar 

  6. Silva RC, Gioielli LA (2009) Structured lipids: alternatives for the production of human milk fat substitutes. Quím Nova 32:1253–1261

    Article  Google Scholar 

  7. Feltes MMC, Villeneuve P, Barea B, Barouh N, Oliveira JV, Oliveira D, Ninow JL (2012) Enzymatic production of monoacylglycerols (MAG) and diacylglycerols (DAG) from fish oil in a solvent-free system. J Amer Oil Chem Soc 89:1057–1065

    Article  CAS  Google Scholar 

  8. Padilha MES, Augusto-Ruiz W (2007) Enzymatic hydrolysis of the fish oil. Food Sci Technol 27:285–290

    Article  CAS  Google Scholar 

  9. Shahidi F, Ambigaipalan P (2015) Novel functional food ingredients from marine sources. Curr Opin Food Sci 2:123–129

    Article  Google Scholar 

  10. Rubio-Rodríguez N, Beltrán S, Jaime I, Diego SM, Sanz MT, Carballido JR (2010) Production of omega-3 polyunsaturated fatty acid concentrates: a review. Innov Food Sci Emerg Technol 11:1–12

    Article  Google Scholar 

  11. Huber GM, Vasantha Rupasinghe HP, Shahidi F (2009) Inhibition of oxidation of omega-3 polyunsaturated fatty acids and fish oil by quercetin glycosides. Food Chem 117(2):290–295

    Article  CAS  Google Scholar 

  12. Pacheco SGA, Regitano-D’Arce MAB (2009) Estabilidade oxidativa de óleo de peixe encapsulado em diferentes tipos de embalagem em condição ambiente. Ciência e Tecnologia de Alimentos 29:927–932

    Article  Google Scholar 

  13. Osório NM, Ribeiro MH, Fonseca MMR, Ferreira-Dias S (2008) Interesterification of fat blends rich in ω-3 polyunsaturated fatty acids catalysed by immobilized Thermomyces lanuginosa lipase under high pressure. J Mol Catal B Enzym 52–53:58–66

    Article  Google Scholar 

  14. Fregolente PBL, Pinto GMF, Wolf-Maciel MR, Maciel Filho R, Batistella CB (2009) Production of monoglycerides and diglycerides through lipase-catalyzed glycerolysis and molecular distillation. Quím Nova 32:1539–1543

    Article  CAS  Google Scholar 

  15. Santos JS, Dors G, Oliveira D, Blanco SFMM, Oliveira JV, Furigo Junior A, Ninow JL, Feltes MMC (2013) Glycerolysis of fish oil catalyzed by a commercial lipase from Rhizomucor miehei in reaction media containing food grade surfactant. Quím Nova 36:46–51

    Article  CAS  Google Scholar 

  16. De Castro HF, Mendes AA, Santos JC, Aguiar CL (2004) Modification of oils and fats by biotransformation. Quím Nova 27:146–156

    Article  Google Scholar 

  17. Correia ACVB, Fonseca MMR, Ferreira-Dias MSL (2011) Produção de emulsionantes através da glicerólise de óleo de bagaço de azeitona catalisada pela lipase da Candida Rugosa imobilizada em espumas de poliuretano. Millenium 41:7–15

    Google Scholar 

  18. Skoronski E, João JJ, Cechinel MAP, Fernandes M (2013) Otimização da esterificação de ácido hexanóico com n-butanol empregando lipase (Thermomyces lanuginosus) imobilizada em gelatina. Quím Nova 36:364–367

    Article  CAS  Google Scholar 

  19. de Araújo MEMB, Campos PRB, Noso TM, Alberici RM, da Silva Cunha IB, Simas RD, Eberlin MN, de Oliveira Carvalho P (2011) Response surface modelling of the production of structured lipids from soybean oil using Rhizomucor miehei lipase. Food Chem 127:28–33

    Article  Google Scholar 

  20. Remonatto D, Santin CMT, Valério A, Lerin L, Batistella L, Ninow JL, de Oliveira JV, de Oliveira D (2015) Lipase-Catalyzed Glycerolysis of Soybean and Canola Oils in a Free Organic Solvent System Assisted by Ultrasound. Appl Biochem Biotechnol. doi:10.1007/s12010-015-1615-1

    Google Scholar 

  21. Khor GK, Sim JH, Kamaruddin AH, Uzir MH (2010) Thermodynamics and inhibition studies of Lipozyme TL IM in biodiesel production via enzymatic transesterification. Bioresour Technol 101:6558–6561

    Article  CAS  Google Scholar 

  22. Krüger RL, Valerio A, Balen M, Ninow JL, Oliveira JV, Oliveira D, Corazza ML (2010) Improvement of mono and diacylglycerol production via enzymatic glycerolysis in tert-butanol system. Eur J Lip Sci Technol 112:921–927

    Article  Google Scholar 

  23. AOCS. (2012) Official methods and recommended practices of the American Oil Chemist’s Society, 6th edn, 2nd printing, Champaign, IL

  24. Valério A, Rovani S, Treichel H, Oliveira D, Oliveira JV (2010) Optimization of mono and diacylglycerols production from enzymatic glycerolysis in solvent-free systems. Bioproc Biosyst Eng 33:805–812

    Article  Google Scholar 

  25. Yeoh CM, Choong TSY, Abdullah LC, Yunus R, Siew WL (2009) Influence of silica gel in production of diacylglycerol via enzymatic glycerolysis of palm olein. Eur J Lip Sci Technol 111:599–606

    Article  CAS  Google Scholar 

  26. Yang TK, Rebsdorf M, Engelrud U, Xu XB (2005) Monoacylglycerol synthesis via enzymatic glycerolysis using a simple and efficient reaction system. J Food Lipids 12:299–312

    Article  CAS  Google Scholar 

  27. Yang TK, Fruekilde MB, Xu XB (2003) Applications of immobilized Thermomyces lanuginosa lipase in interesterification. J Amer Oil Chem Soc 80:881–887

    Article  CAS  Google Scholar 

  28. Dizge N, Keskinler B (2008) Enzymatic production of biodiesel from canola oil using immobilized lipase. Biomass Bioenerg 32:1274–1278

    Article  CAS  Google Scholar 

  29. Antczak MS, Kubiak A, Antczak T, Bielecki S (2009) Enzymatic biodiesel synthesis—key factors affecting efficiency of the process. Renewable Energy 34:1185–1194

    Article  Google Scholar 

  30. Zhong N, Li L, Xu X, Cheong L-Z, Zhao X, Li B (2010) Production of diacylglycerols through low-temperature chemical glycerolysis. Food Chem 122:228–232

    Article  CAS  Google Scholar 

  31. Wang Z, Lin X, Li P, Zhang J, Wang S, Ma H (2012) Effects of low intensity ultrasound on cellulase pretreatment. Bioresour Technol 117:222–227

    Article  CAS  Google Scholar 

  32. Ranganathan SV, Narasimhan SL, Muthukumar K (2008) An overview of enzymatic production of biodiesel. Bioresour Technol 99:3975–3981

    Article  CAS  Google Scholar 

  33. Pawongrat R, Xu X, H-Kittikun A (2007) Physico-enzymatic production of monoacylglycerols enriched with very-long-chain polyunsaturated fatty acids. J Sci Food Agric 88(2):256–262

    Article  Google Scholar 

  34. Barouh N, Piombo G, Goli T, Baréa B, Pina M, Lago R, Villeneuve P (2008) Enzymatic production of conjugated linoleic acid monoacylglycerols from dehydrated isomerized castor bean oil. J Food Lipids 15:13–27

    Article  CAS  Google Scholar 

  35. Feltes MMC, Oliveira JV, Treichel H, Block JM, Oliveira D, Ninow JL (2010) Assessment of process parameters on the production of diglycerides rich in omega-3 fatty acids through the enzymatic glycerolysis of fish oil. Eur Food Res Technol 231:701–710

    Article  CAS  Google Scholar 

  36. Krüger RL, Valério A, Balen M, Ninow JL, Oliveira JV, Oliveira D, Corazza ML (2010) Improvement of mono and diacylglycerol production via enzymatic glycerolysis in tert-butanol system. Eur J Lipid Sci Technol 112(8):921–927

    Article  Google Scholar 

  37. Brazil. ANVISA: Agência Nacional de Vigilância Sanitária (1997) Portaria no. 540, de 27 de outubro de 1997, “Regulamento Técnico: Aditivos Alimentares—Definições, Classificação e Emprego”, Diário Oficial da União, Poder Executivo, Brasília, Brazil. http://portal.anvisa.gov.br. Accessed 26 February 2015

  38. Hu D-J, Chen J-M, Xia Y-M (2013) A comparative study on production of middle chain diacylglycerol through enzymatic esterification and glycerolysis. J Ind Eng Chem 19:1457–1463

    Article  CAS  Google Scholar 

  39. Feltes MMC, Oliveira D, Block JM, Ninow JL (2013) The production, benefits and applications of monoacylglycerols and diacylglycerols of nutritional interest. Food Bioproc Technol 6:17–35

    Article  CAS  Google Scholar 

  40. Dhara R, Singhal RS (2014) Process optimization of enzyme catalyzed production of dietary diacylglycerol (DAG) using TLIM as biocatalyst. J Oleo Sci 63(2):169–176

    Article  CAS  Google Scholar 

  41. Qi J-F, Wang X-Y, Zhang H, Lee JH (2014) Optimization of omega-3 enriched-diacylglycerol production by enzymatic esterification using a response surface methodology. Food Sci Biotechnol 23(4):1129–1136

    Article  CAS  Google Scholar 

  42. Liu N, Wang Y, Zhao Q, Zhang Q, Zhao M (2011) Fast synthesis of 1,3-DAG by Lecitase® Ultra-catalyzed esterification in solvent-free system. Eur J Lipid Sci Technol 113:973–979

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from Fundação de Apoio à Pesquisa Científica e Tecnológica do Estado de Santa Catarina (FAPESC, Brazil), as well as fellowships from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) are appreciated. Donations of lipase from Novozymes (Brazil) and fish oil from OmegaProtein (USA) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. C. Feltes.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monte Blanco, S.F.M., Santos, J.S., Feltes, M.M.C. et al. Optimization of diacylglycerol production by glycerolysis of fish oil catalyzed by Lipozyme TL IM with Tween 65. Bioprocess Biosyst Eng 38, 2379–2388 (2015). https://doi.org/10.1007/s00449-015-1473-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1473-9

Keywords

Navigation