Skip to main content
Log in

Enhancing fermentable sugar yield from cassava pulp for bioethanol production: microwave-coupled enzymatic hydrolysis approach

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Cassava pulp, a potential biological feedstock for ethanol production has been subjected to microwave-assisted alkali pretreatment and microwave-coupled enzymatic hydrolysis. Microwave pretreatment may be a good alternative as it can reduce the pretreatment time and improve the enzymatic activity during hydrolysis. Liquid to solid ratio for the pretreatment of cassava pulp was found to be 20:1. Cassava pulp was pretreated at various NaOH concentration, microwave temperature and gave maximum yield of reducing sugar with 1.5 % NaOH at 90 °C in 30 min than conventional alkali pretreatment after enzymatic hydrolysis. The subsequent enzymatic saccharification of pretreated cassava pulp using α amylase dosage of 400 IU at microwave temperature of 90 °C resulted in highest reducing sugar yield of 723 mg/g pulp. Microwave-assisted alkali pretreatment improved the enzymatic saccharification of cassava pulp by increasing its accessibility to hydrolytic enzymes. Microwave-assisted alkali pretreatment and microwave-coupled enzymatic hydrolysis are found to be efficient for improving the yield of reducing sugar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhu S, Wu Y, Yu Z, Zhang X, Wang C, Yu F, Jin S (2006) Production of ethanol from microwave-assisted alkali pretreated wheat straw. Process Biochem 41(4):869–873

    Article  CAS  Google Scholar 

  2. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  CAS  Google Scholar 

  3. Rattanachomsri U, Tanapongpipat S, Eurwilaichitr L, Champreda V (2009) Simultaneous non-thermal saccharification of cassava pulp by multi-enzyme activity and ethanol fermentation by Candida tropicalis. J Biosci Bioeng 107:488–493

    Article  CAS  Google Scholar 

  4. Zhu M, Li P, Gong X, Wang (2012) A comparison of the production of ethanol between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using unpretreated cassava pulp and enzyme cocktail. J Biosci Biotechnol Biochem 76(4):671–678

    Article  CAS  Google Scholar 

  5. Sriroth K, Chollakup R, Chotineeranat S, Piyachomkwan K, Oates CG (2000) Processing of cassava waste for improved biomass utilization. Bioresour Technol 71(1):63–69

    Article  CAS  Google Scholar 

  6. Divya Nair MP, Padmaja G, Moorthy SN (2011) Biodegradation of cassava starch factory residue using a combination of cellulases, xylanases and hemicellulases. Biomass Bioenerg 35(3):1211–1218

    Article  CAS  Google Scholar 

  7. Zhu S, Wu Y, Yu Z, Chen Q, Wu G, Yu F, Jin S (2006) Microwave-assisted alkali pre-treatment of wheat straw and its enzymatic hydrolysis. Biosyst Eng 94(3):437–442

    Article  Google Scholar 

  8. Ooshima H, Aso K, Harano Y, Yamamoto T (1984) Microwave treatment of cellulosic materials for their enzymatic hydrolysis. Biotechnol Lett 6(5):289–294

    Article  CAS  Google Scholar 

  9. Li J, Yang Y, Chen H, Jiang F, Ling J, Liu M, Xu J (2009) Comparison of saccharification process by acid and microwave-assisted acid pretreated swine manure. Bioprocess Biosyst Eng 32(5):649–654

    Article  CAS  Google Scholar 

  10. Hu Z, Wen Z (2008) Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochem Eng J 38(3):369–378

    Article  CAS  Google Scholar 

  11. Binod P, Satyanagalakshmi K, Sindhu R, Janu KU, Sukumaran RK, Pandey A (2012) Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renew Energy 37(1):109–116

    Article  CAS  Google Scholar 

  12. Leadbeater NE, Stencel LM, Wood EC (2007) Probing the effects of microwave irradiation on enzyme-catalysed organic transformations: the case of lipase-catalysed transesterification reactions. Org Biomol Chem 5(7):1052–1055

    Article  CAS  Google Scholar 

  13. Yadav GD, Sajgure AD (2007) Synergism of microwave irradiation and enzyme catalysis in synthesis of isoniazid. J Chem Technol Biotechnol 82(11):964–970

    Article  CAS  Google Scholar 

  14. Roy I, Gupta MN (2003) Applications of microwaves in biological sciences. Curr Sci 85(12):1685–1692

    CAS  Google Scholar 

  15. Yadav GD, Lathi PS (2007) Microwave assisted enzyme catalysis for synthesis of n-butyl dipheyl methyl mercapto acetate in non-aqueous media. Clean Technol Environ Policy 9(4):281–287

    Article  CAS  Google Scholar 

  16. Saifuddin N, Raziah AZ, Farah H (2009) Production of biodiesel from high acid value waste cooking oil using an optimized lipase enzyme/acid-catalyzed hybrid process. J Chem 6(S1):S485–S495

    CAS  Google Scholar 

  17. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428

    Article  CAS  Google Scholar 

  18. Goering HK, Van Soest PJ (1970) Forage fiber analyses (apparatus, reagents, procedures, and some applications). USDA Agr Handb

  19. APHA (2005) In: Eaton AD, Clesceri LS, Rice EW, Greenberg AE, Franson MAH (eds) Standard methods for the examination of water and wastewater. 21st edn. American Public Health Association, American Water Works Association, Water Environment Federation, USA (centennial edition)

  20. Pandey A, Soccol CR, Nigam P, Soccol VT, Vandenberghe LP, Mohan R (2000) Biotechnological potential of agro-industrial residues. II: cassava bagasse. Bioresour Technol 74(1):81–87

    Article  CAS  Google Scholar 

  21. Gong G, Liu D, Huang Y (2010) Microwave-assisted organic acid pretreatment for enzymatic hydrolysis of rice straw. Biosyst Eng 107(2):67–73

    Article  Google Scholar 

  22. Hermiati E, Azuma J, Tsubaki S, Mangunwidjaja D, Sunarti TC, Suparno O, Prasetya B (2012) Improvement of microwave-assisted hydrolysis of cassava pulp and tapioca flour by addition of activated carbon. Carbohydr Polym 87:939–942

    Article  CAS  Google Scholar 

  23. Kosugi A, Kondo A, Ueda M, Murata Y, Vaithanomsat P, Thanapase W, Arai T, Mori Y (2009) Production of ethanol from cassava pulp via fermentation with a surface engineered yeast strain displaying glucoamylase. Renew Energy 34:1354–1358

    Article  CAS  Google Scholar 

  24. Euis Hermiati, Djumali Mangunwidjaja, Sunarti Titi C, Ono Suparno, Bambang Prasetya (2012) Potential utilization of cassava pulp for ethanol production in Indonesia. Sci Res Essays 7(2):100–110

    Google Scholar 

  25. Boonsombuti A, Luengnaruemitchai A, Wongkasemjit S (2013) Enhancement of enzymatic hydrolysis of corncob by microwave-assisted alkali pretreatment and its effect in morphology. Cellulose 20(4):1957–1966

    Article  CAS  Google Scholar 

  26. Nomanbhay SM, Hussain R, Palanisamy K (2013) Microwave-assisted alkaline pretreatment and microwave assisted enzymatic saccharification of oil palm empty fruit bunch fiber for enhanced fermentable sugar yield. J Sustain Bioenerg Syst 3:7–17

    Article  Google Scholar 

  27. Silverstein RA, Chen Y, Sharma-Shivappa RR, Boyette MD, Osborne J (2007) A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol 98(16):3000–3011

    Article  CAS  Google Scholar 

  28. Keshwani DR, Cheng JJ (2010) Microwave-based alkali pretreatment of switchgrass and coastal bermudagrass for bioethanol production. Biotechnol Prog 26(3):644–652

    Article  CAS  Google Scholar 

  29. Roy I, Gupta MN (2003) Non-thermal effects of microwaves on protease-catalyzed esterification and transesterification. Tetrahedron 59(29):5431–5436

    Article  CAS  Google Scholar 

  30. Asakuma Y, Ogawa Y, Maeda K, Fukui K, Kuramochi H (2011) Effects of microwave irradiation on triglyceride transesterification: experimental and theoretical studies. Biochem Eng J 58:20–24

    Article  Google Scholar 

  31. Saifuddin N, Chua KH (2004) Production of ethyl ester (biodiesel) from used frying oil: optimization of transesterification process using microwave irradiation. Malays J Chem 6(1):077–082

    Google Scholar 

  32. Hernando J, Leton P, Matia MP, Novella JL, Alvarez-Builla J (2007) Biodiesel and FAME synthesis assisted by microwaves: homogeneous batch and flow processes. Fuel 86(10):1641–1644

  33. Saifuddin N, Zhan LW, Ning KX (2011) Heat-modeling of microwave assisted epoxidation of palm acid oil. Am J Appl Sci 8(3):217

    Article  CAS  Google Scholar 

  34. Kuhnert N (2002) Microwave-assisted reactions in organic synthesis—are there any nonthermal microwave effects? Angew Chem Int Ed 41(11):1863–1866

    Article  CAS  Google Scholar 

  35. Booske JH, Cooper RF, Freeman SA (1997) Microwave enhanced reaction kinetics in ceramics. Mater Res Innov 1(2):77–84

    Article  CAS  Google Scholar 

  36. De La Hoz A, Diaz-Ortiz A, Moreno A (2004) Selectivity in organic synthesis under microwave irradiation. Curr Org Chem 8(10):903–918

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sivakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudha, A., Sivakumar, V., Sangeetha, V. et al. Enhancing fermentable sugar yield from cassava pulp for bioethanol production: microwave-coupled enzymatic hydrolysis approach. Bioprocess Biosyst Eng 38, 1509–1515 (2015). https://doi.org/10.1007/s00449-015-1393-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1393-8

Keywords

Navigation